Electrochemical Characterisation of Heat-Treated Metal and Non-Metal Anodes using Mud in Microbial Fuel Cell

Authors
Shamsuddin, Raba'Atun AdawiyahDaud, Wan Ramli WanKIM, BYUNG HONGJahim, Jamaliah MdAbu Bakar, Mimi HaniNoor, Wan Syaidatul Aqma Wan MohdYunus, Rozan Mohamad
Issue Date
2018-12
Publisher
UNIV KEBANGSAAN MALAYSIA
Citation
SAINS MALAYSIANA, v.47, no.12, pp.3043 - 3049
Abstract
Microbial fuel cells (MFCs) have a high potential application for simultaneous wastewater treatment and electricity generation. However, the choice of the electrode material and its design is critical and directly affect their performance. As an electrode of MFCs, the anode material with surface modifications is an attractive strategy to improve the power output. In this study, stainless steel (SS) and carbon steel (CS) was chosen as a metal anode, while graphite felt (GF) was used as a common anode. Heat treatment was performed to convert SS, CS and GF into efficient anodes for MFCs. The maximum current density and power density of the MFC-SS were achieved up till 762.14 mA/m(2) and 827.25 mW/m(2), respectively, which were higher than MFC-CS (641.95 mAlm 2 and 260.14 mW/m(2) ) and MFC-GF (72830 mA/m(2) and 307.89 mW/m(2)). Electrochemical impedance spectroscopy of MFC-SS showed better catalytic activity compared to MFC-CS and MFC-GF anode, also supported by cyclic voltammetry test.
Keywords
EXTRACELLULAR ELECTRON-TRANSFER; OXIDIZED STAINLESS-STEEL; POWER-GENERATION; CARBON; PERFORMANCE; FELT; GRAPHITE; Anode; carbon steel; graphite felt; MFC; stainless steel
ISSN
0126-6039
URI
https://pubs.kist.re.kr/handle/201004/120599
DOI
10.17576/jsm-2018-4712-14
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE