Aqueous-phase synthesis of Pd/TiO2/Fe3O4 hybrid nanostructures and their enhanced catalytic properties
- Authors
- Cho, Ahyoung; Han, Geun-Ho; Kim, Jin Soo; Lee, Jae-Chul; Ahn, Jae-Pyoung; Lee, Kwan-Young; Yu, Taekyung
- Issue Date
- 2018-11-16
- Publisher
- ELSEVIER SCIENCE BV
- Citation
- CHEMICAL PHYSICS LETTERS, v.712, pp.13 - 19
- Abstract
- The development of a new concept of support for catalytic activity is important in the development of catalysts. Dual-supports, composed of a mixture of two metal oxides, can increase catalytic activities by controlling the oxidation state of metal catalysts, as well as give multi-functionality to the catalyst, including photocatalytic properties and reusability. We report an aqueous-phase synthesis of Pd/and Pt/TiO2/Fe3O4 hybrid nanostructures. The synthesized nanostructures had metal nanoparticles with sizes of less than 2.8 nm. The synthesized nanostructures exhibited high H2O2 selectivity toward the H2O2 generation and also showed potential as a magnetic separable catalyst for both H2O2 synthesis and photocatalytic reaction.
- Keywords
- HYDROGEN-PEROXIDE SYNTHESIS; PD NANOPARTICLES; ACTIVE-SITES; PALLADIUM; H2O2; H-2; OXYGEN; O-2; OXIDATION; REDUCTION; HYDROGEN-PEROXIDE SYNTHESIS; PD NANOPARTICLES; ACTIVE-SITES; PALLADIUM; H2O2; H-2; OXYGEN; O-2; OXIDATION; REDUCTION; Palladium; TiO2/Fe3O4; Hybrid nanostructure; H2O2 generation; Photocatalyst
- ISSN
- 0009-2614
- URI
- https://pubs.kist.re.kr/handle/201004/120673
- DOI
- 10.1016/j.cplett.2018.09.054
- Appears in Collections:
- KIST Article > 2018
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.