Full metadata record

DC Field Value Language
dc.contributor.authorPyeon, Jung Joon-
dc.contributor.authorCho, Cheol Jin-
dc.contributor.authorJeong, Doo Seok-
dc.contributor.authorKim, Jin-Sang-
dc.contributor.authorKang, Chong-Yun-
dc.contributor.authorKim, Seong Keun-
dc.date.accessioned2024-01-19T21:31:02Z-
dc.date.available2024-01-19T21:31:02Z-
dc.date.created2021-09-05-
dc.date.issued2018-11-09-
dc.identifier.issn0957-4484-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120688-
dc.description.abstractRutile TiO2, a high temperature phase, has attracted interest as a capacitor dielectric in dynamic random-access memories (DRAMs). Despite its high dielectric constant of >80, large leakage currents caused by a low Schottky barrier height at the TiO2/electrode interface have hindered the use of rutile TiO2 as a commercial DRAM capacitor. Here, we propose a new Ru-Pt alloy electrode to increase the height of the Schottky barrier. The Ru-Pt mixed layer was grown by atomic layer deposition. The atomic ratio of Ru/Pt varied in the entire range from 100 at.% Ru to 100 at.% Pt. Rutile TiO(2)films were inductively formed only on the Ru-Pt layer containing <= 43 at.% Pt, while anatase TiO2 films with a relatively low dielectric constant (similar to 40) were formed at Pt compositions > 63 at.%. The Ru-Pt (40-50 at.%) layer also attained an increase in work function of similar to 0.3-0.4 eV, leading to an improvement in the leakage currents of the TiO2/Ru-Pt capacitor. These findings suggested that a Ru-Pt layer could serve as a promising electrode for next-generation DRAM capacitors.-
dc.languageEnglish-
dc.publisherIOP PUBLISHING LTD-
dc.subjectATOMIC-LAYER DEPOSITION-
dc.subjectHIGH DIELECTRIC-CONSTANT-
dc.subjectDOPED TIO2 FILMS-
dc.subjectTHIN-FILMS-
dc.subjectTITANIUM-DIOXIDE-
dc.subjectGROWTH-BEHAVIOR-
dc.titleA Ru-Pt alloy electrode to suppress leakage currents of dynamic random-access memory capacitors-
dc.typeArticle-
dc.identifier.doi10.1088/1361-6528/aaddbc-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANOTECHNOLOGY, v.29, no.45-
dc.citation.titleNANOTECHNOLOGY-
dc.citation.volume29-
dc.citation.number45-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000444750800001-
dc.identifier.scopusid2-s2.0-85053379944-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusATOMIC-LAYER DEPOSITION-
dc.subject.keywordPlusHIGH DIELECTRIC-CONSTANT-
dc.subject.keywordPlusDOPED TIO2 FILMS-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusTITANIUM-DIOXIDE-
dc.subject.keywordPlusGROWTH-BEHAVIOR-
dc.subject.keywordAuthorDRAM-
dc.subject.keywordAuthorcapacitor-
dc.subject.keywordAuthorRu-Pt electrode-
dc.subject.keywordAuthorrutile TiO2-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE