Ionic-Liquid-Derived Nitrogen-Doped Carbon Electrocatalyst for Peroxide Generation and Divalent Iron Regeneration: Its Application for Removal of Aqueous Organic Compounds
- Authors
- Ko, Young-Jin; Kim, Hee-Gon; Seid, Mingizem G.; Cho, Kangwoo; Choi, Jae-Woo; Lee, Wook-Seong; Hong, Seok Won
- Issue Date
- 2018-11
- Publisher
- American Chemical Society
- Citation
- ACS Sustainable Chemistry & Engineering, v.6, no.11, pp.14857 - 14865
- Abstract
- We investigated the activities of the ionic-liquid-derived (by pyrolysis) nitrogen-doped carbon as the electrocatalyst for the two-electron oxygen reduction reaction (ORR) and regeneration of divalent iron in the electro-Fenton process, focusing on the pyrolysis-temperature-dependent evolution of the doping structure. The results provided insight into the evolution of the catalytic activity as a function of the pyrolysis temperature. On the basis of the XPS N is analysis, the pyrolysis temperature was optimized at the 900 degrees C since the pyridinic/graphitic N structures which are known to be active sites for the ORR were maximized (4.29% pyridinic N and 7.30% graphitic N). The carbonyl surface group, which is known to be an active site for the Fe3+/Fe2+ redox, was also maximized at the pyrolysis temperature of 900 degrees C (1.11%). This catalyst, adopting two simultaneously working electrodes for in situ H2O2 generation/Fe2+ regeneration, was successfully applied to the removal of the azo-dye (Orange II, TOC removal approximate to 95%) and the trace pharmaceutical compounds [carbamazepine, amoxicillin (approximate to 100% degradation within 90 min) and cimetidine (approximate to 90% degradation within 180 min)]; the pyrolysis-temperature-optimized performance was superior to those of many conventional carbon-based electrocatalysts.
- Keywords
- OXYGEN REDUCTION REACTION; ELECTRO-FENTON PROCESS; GAS-DIFFUSION CATHODE; WASTE-WATER TREATMENT; HYDROGEN-PEROXIDE; O-2 REDUCTION; FELT CATHODE; ORANGE II; DEGRADATION; OXIDATION; Ionic liquid; Nitrogen-doped graphitic carbon; Electro-Fenton process; In situ peroxide generation; Divalent iron regeneration
- ISSN
- 2168-0485
- URI
- https://pubs.kist.re.kr/handle/201004/120735
- DOI
- 10.1021/acssuschemeng.8b03383
- Appears in Collections:
- KIST Article > 2018
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.