Fabrication of high-quality or highly porous graphene sheets from exfoliated graphene oxide via reactions in alkaline solutions

Authors
Cho, Joon YoungJang, Jeong InLee, Won KiJeong, Soo YeonHwang, Jun YeonLee, Heon SangPark, Jong HwanJeong, Seung YolJeong, Hee JinLee, Geon-WoongHan, Joong Tark
Issue Date
2018-11
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Citation
CARBON, v.138, pp.219 - 226
Abstract
The applications of solution-exfoliated graphene oxide (GO) as an electrical/electrochemical conductor require rational design-based approaches. Herein, we show that reduced GO nanosheets with highly ordered or nanoporous structures can be fabricated by treatment of graphite oxide (GrO) having variable-oxidation-degree with hot KOH solution. As model systems, GrO powders fabricated by modified Brodie and Hummers methods (B-GrO and H-GrO, respectively) were exfoliated into GO in alkaline solutions (to afford B-KGO and H-KGO, respectively), followed by 2.5-h refluxing at 100 degrees C. Notably, B-KGO was exceptionally resistant to hot KOH solution, whereas H-KGO was partially reduced under these conditions, as confirmed by C-13 solid-state NMR, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy analyses. Moreover, reduced B-KGO featured highly ordered structures, whereas reduced H-KGO contained nanopores resulting from low-temperature activation in KOH solution. These extraordinary reactions of KGO nanosheets were translated into different electrical properties of reduced KGO nanosheets and different rheological properties of the corresponding pastes. (C) 2018 Elsevier Ltd. All rights reserved.
Keywords
OXO-FUNCTIONALIZED GRAPHENE; GRAPHITE OXIDE; CHEMICAL-REDUCTION; RAMAN-SPECTROSCOPY; KOH ACTIVATION; NANOSHEETS; FILMS; WATER; TRANSPARENT; PERFORMANCE; OXO-FUNCTIONALIZED GRAPHENE; GRAPHITE OXIDE; CHEMICAL-REDUCTION; RAMAN-SPECTROSCOPY; KOH ACTIVATION; NANOSHEETS; FILMS; WATER; TRANSPARENT; PERFORMANCE; Graphene oxide; Reduction; Activation; High quality; Nanopore; Alkaline solution
ISSN
0008-6223
URI
https://pubs.kist.re.kr/handle/201004/120739
DOI
10.1016/j.carbon.2018.06.013
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE