In-situ glycerol aqueous phase reforming and phenol hydrogenation over Raney Ni (R)

Authors
Putra, Robertus Dhimas DhewanggaTrajano, Heather L.Liu, ShidaLee, HyunjooSmith, KevinKim, Chang Soo
Issue Date
2018-10
Publisher
Elsevier BV
Citation
Chemical Engineering Journal, v.350, pp.181 - 191
Abstract
In-situ glycerol aqueous phase reforming and phenol hydrogenation (IGAPH) was conducted with Raney Ni (R) at 180-240 degrees C for phenol to glycerol ratios from 0 to 4.88. Thermodynamic analysis of the complex IGAPH reaction system revealed the need to balance endothermic glycerol aqueous phase reforming (APR) and exothermic phenol hydrogenation reactions. It was found that maximum glycerol carbon selectivity for APR and maximum hydrogen selectivity for phenol hydrogenation occurred at 220 degrees C. Addition of phenol to glycerol APR increased glycerol conversion and glycerol carbon selectivity for APR. These observations can be attributed to an equilibrium shift to the forward APR reaction due to hydrogen consumption and suppression of competing parallel reactions by phenol hydrogenation. An initial rate model of the system suggests that IGAPH proceeds via the Langmuir-Hinshelwood mechanism and is rate-limited by phenol hydrogenation. Perspectives for future process development in terms of reaction heat and catalyst stability are provided.
Keywords
BIOMASS-DERIVED HYDROCARBONS; OXYGENATED HYDROCARBONS; BIO-OIL; CATALYSTS; LIGNIN; HYDRODEOXYGENATION; NI; HYDROGENOLYSIS; DEPOLYMERIZATION; PYROLYSIS; Glycerol aqueous phase reforming (APR); Phenol hydrogenation; Reaction mechanism; Raney Ni (R)
ISSN
1385-8947
URI
https://pubs.kist.re.kr/handle/201004/120788
DOI
10.1016/j.cej.2018.05.146
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE