Thermal Management in Polymer Composites: A Review of Physical and Structural Parameters

Authors
Kim, Hyun SuJang, Ji-unLee, HyeseongKim, Seong YunKim, Seong HunKim, JaewooJung, Yong ChaeYang, Beom Joo
Issue Date
2018-10
Publisher
WILEY-V C H VERLAG GMBH
Citation
ADVANCED ENGINEERING MATERIALS, v.20, no.10
Abstract
Contrary to expectation, the thermal conductivity of carbon-polymer nanocomposites has been reported to be low near the lower boundary of the rule of mixtures. Various dispersing processes have been developed to achieve uniform dispersion of the nanocarbon fillers, including an in situ polymerization process based on ring-opening polymerizable oligoesters. However, even if the nanofiller is well dispersed, phonon scattering due to the interfacial thermal resistance at the nanofiller-matrix interface and the contact thermal resistance at the nanofiller-nanofiller interface is inevitable, and this is the main cause of the low thermal conductivity of the nanocomposite. When the nanofiller is incorporated in a high content, the interfacial thermal resistance can be overcome by forming a contacted three-dimensional (3D) filler network between the fillers. Recently, thermal percolation behavior has been reported to occur in composite materials with sufficiently high carbon filler content. Also, the thermal conductivity can be synergistically improved by the simultaneous incorporation of fillers of different sizes and shapes, forming a contacted 3D filler network. It can be concluded that large fillers with high thermal conductivity are suitable for thermally conductive composites, while nanofiller is advantageous for heat-insulating composites.
Keywords
CARBON NANOTUBE FILLERS; IN-SITU POLYMERIZATION; EXPANDED GRAPHITE; ELECTRICAL-CONDUCTIVITY; SYNERGISTIC IMPROVEMENT; MECHANICAL-PROPERTIES; THEORETICAL APPROACH; ENHANCED DISPERSION; EPOXY COMPOSITES; BORON-NITRIDE; CARBON NANOTUBE FILLERS; IN-SITU POLYMERIZATION; EXPANDED GRAPHITE; ELECTRICAL-CONDUCTIVITY; SYNERGISTIC IMPROVEMENT; MECHANICAL-PROPERTIES; THEORETICAL APPROACH; ENHANCED DISPERSION; EPOXY COMPOSITES; BORON-NITRIDE; aerogel; carbon; composite; thermal conductivity
ISSN
1438-1656
URI
https://pubs.kist.re.kr/handle/201004/120860
DOI
10.1002/adem.201800204
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE