Engineering copper nanoparticles synthesized on the surface of carbon nanotubes for anti-microbial and anti-biofilm applications
- Authors
- Seo, Youngmin; Hwang, Jangsun; Lee, Eunwon; Kim, Young Jin; Lee, Kyungwoo; Park, Chanhwi; Choi, Yonghyun; Jeon, Hojeong; Choi, Jonghoon
- Issue Date
- 2018-09-07
- Publisher
- ROYAL SOC CHEMISTRY
- Citation
- NANOSCALE, v.10, no.33, pp.15529 - 15544
- Abstract
- Biofilms adhere to surfaces to produce extracellular polymeric substances (EPSs). EPSs grow and protect themselves from external stresses. Their formation causes a foul odor and may lead to chronic infectious diseases in animals and people. Biofilms also inhibit the contact between bacteria and antibiotics, thereby reducing their antibacterial activity. Thus, we describe novel nanostructures, a fusion of copper and multi-walled carbon nanotubes (MWCNTs), which increase antimicrobial activity against biofilms without being toxic to human cells. Simulations based on the stochastic response were performed to predict the efficiency of synthesizing nanostructures. The synthesized Cu/MWCNTs inhibit the growth of Methylobacterium spp., which forms biofilms; antimicrobial testing and cytotoxicity assessments showed that the Cu/MWCNTs were not cytotoxic to human cells. The Cu/MWCNTs come in direct contact with the bacterial cell surface, damage the cell wall, and cause secondary oxidation of reactive oxygen species. Furthermore, the Cu/MWCNTs release copper ions, which inhibit the quorum sensing in Methylobacterium spp., thereby inhibiting the expression of the genes that form biofilms. Additionally, we confirmed excellent electrical and thermal conductivity of Cu/MWCNTs as well as biofilm removal efficiency in the microfluidic channel.
- Keywords
- QUORUM-SENSING SIGNALS; SODIUM DODECYL-SULFATE; SILVER NANOPARTICLES; ESCHERICHIA-COLI; ANTIBACTERIAL ACTIVITY; OXIDE NANOPARTICLES; METHYLOBACTERIUM-EXTORQUENS; BACTERIAL BIOLUMINESCENCE; SUPEROXIDE DISMUTASES; THERMAL-CONDUCTIVITY; QUORUM-SENSING SIGNALS; SODIUM DODECYL-SULFATE; SILVER NANOPARTICLES; ESCHERICHIA-COLI; ANTIBACTERIAL ACTIVITY; OXIDE NANOPARTICLES; METHYLOBACTERIUM-EXTORQUENS; BACTERIAL BIOLUMINESCENCE; SUPEROXIDE DISMUTASES; THERMAL-CONDUCTIVITY; cell-cell communication; quorum-sensing signals; sodium dodecyl-sulfate; gram-negative bacteria; silver nanoparticles; escherichia-coli; antibacterial activity; oxide nanoparticles
- ISSN
- 2040-3364
- URI
- https://pubs.kist.re.kr/handle/201004/120921
- DOI
- 10.1039/c8nr02768d
- Appears in Collections:
- KIST Article > 2018
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.