Characterization of a Pd/Ta composite membrane and its application to a large scale high-purity hydrogen separation from mixed gas
- Authors
- Jo, Young Suk; Lee, Chan Hyun; Kong, Seong Young; Lee, Kwan-Young; Yoon, Chang Won; Nam, Suk Woo; Han, Jonghee
- Issue Date
- 2018-07-12
- Publisher
- ELSEVIER SCIENCE BV
- Citation
- SEPARATION AND PURIFICATION TECHNOLOGY, v.200, pp.221 - 229
- Abstract
- Group VB metals, as candidates for hydrogen separation metallic membrane, suffer from low surface catalytic activity and mechanical integrity issues due to hydrogen embrittlement, which limited their practical application for mixed gas purification. This study overcomes these problems and successfully demonstrates operation schemes of a Pd/Ta composite membrane, prepared by an electroless deposition of a thin Pd layer on a bulk Ta surface. The fabricated Pd/Ta composite membrane presented higher permeability (4.7 x 10(-8) mol m(-1) s(-1) pa(-0.5)) than that of Pd-based metallic membranes reported in the previous literatures, and gas chromatography analysis proved a fuel-cell grade high-purity hydrogen (purity of 99.999% and < 10 ppm CO) separation from the mixed gas (CO, CO2, H2O, and H-2) at between 400 and 500 degrees C. Moreover, a membrane module was also prepared for treating 26 L min(-1) of mixed gas feed flow and separating about 6.9 L min(-1) of pure hydrogen with feed side hydrogen partial pressure of 4.3 bar. Leak-free operation of the module was possible under pressurized conditions (< 10 bar), and hydrogen embrittlement issues of Ta could be successfully avoided by tailoring the operating conditions.
- Keywords
- ENHANCED REACTION PROCESS; METAL MEMBRANES; PALLADIUM MEMBRANES; ALLOY MEMBRANES; PD; PERMEABILITY; PURIFICATION; PERFORMANCE; PERMEATION; TRANSPORT; ENHANCED REACTION PROCESS; METAL MEMBRANES; PALLADIUM MEMBRANES; ALLOY MEMBRANES; PD; PERMEABILITY; PURIFICATION; PERFORMANCE; PERMEATION; TRANSPORT; Pd/Ta composite membrane; Fuel-cell grade high-purity hydrogen; Hydrogen purification; Permeability; Dense metallic membranes
- ISSN
- 1383-5866
- URI
- https://pubs.kist.re.kr/handle/201004/121154
- DOI
- 10.1016/j.seppur.2017.12.019
- Appears in Collections:
- KIST Article > 2018
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.