Full metadata record

DC Field Value Language
dc.contributor.authorBastings, Maartje M. C.-
dc.contributor.authorAnastassacos, Frances M.-
dc.contributor.authorPonnuswamy, Nandhini-
dc.contributor.authorLeifer, Franziska G.-
dc.contributor.authorCuneo, Garry-
dc.contributor.authorLin, Chenxiang-
dc.contributor.authorIngber, Donald E.-
dc.contributor.authorRyu, Ju Hee-
dc.contributor.authorShih, William M.-
dc.date.accessioned2024-01-19T22:32:53Z-
dc.date.available2024-01-19T22:32:53Z-
dc.date.created2021-09-03-
dc.date.issued2018-06-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121291-
dc.description.abstractDesigner nanoparticles with controlled shapes and sizes are increasingly popular vehicles for therapeutic delivery due to their enhanced cell-delivery performance. However, our ability to fashion nanoparticles has offered only limited control over these parameters. Structural DNA nanotechnology has an unparalleled ability to self-assemble three-dimensional nanostructures with near-atomic resolution features, and thus, it offers an attractive platform for the systematic exploration of the parameter space relevant to nanoparticle uptake by living cells. In this study, we examined the cell uptake of a panel of 11 distinct DNA-origami shapes, with the largest dimension ranging from 50-400 nm, in 3 different cell lines. We found that larger particles with a greater compactness were preferentially internalized compared with elongated, high-aspect-ratio particles. Uptake kinetics were also found to be more cell-type-dependent than shape-dependent, with specialized endocytosing dendritic cells failing to saturate over 12 h of study. The knowledge gained in the current study furthers our understanding of how particle shape affects cellular uptake and heralds the development of DNA nanotechnologies toward the improvement of current state-of-the-art cell-delivery vehicles.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectDRUG-DELIVERY-
dc.subjectPARTICLE DESIGN-
dc.subjectMAMMALIAN-CELLS-
dc.subjectNANOSTRUCTURES-
dc.subjectSIZE-
dc.subjectINTERNALIZATION-
dc.subjectNANOPARTICLES-
dc.subjectNANOMATERIALS-
dc.subjectMECHANISMS-
dc.subjectPATHWAYS-
dc.titleModulation of the Cellular Uptake of DNA Origami through Control over Mass and Shape-
dc.typeArticle-
dc.identifier.doi10.1021/acs.nanolett.8b00660-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANO LETTERS, v.18, no.6, pp.3557 - 3564-
dc.citation.titleNANO LETTERS-
dc.citation.volume18-
dc.citation.number6-
dc.citation.startPage3557-
dc.citation.endPage3564-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000435524300035-
dc.identifier.scopusid2-s2.0-85047413125-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusDRUG-DELIVERY-
dc.subject.keywordPlusPARTICLE DESIGN-
dc.subject.keywordPlusMAMMALIAN-CELLS-
dc.subject.keywordPlusNANOSTRUCTURES-
dc.subject.keywordPlusSIZE-
dc.subject.keywordPlusINTERNALIZATION-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusNANOMATERIALS-
dc.subject.keywordPlusMECHANISMS-
dc.subject.keywordPlusPATHWAYS-
dc.subject.keywordAuthorDNA origami-
dc.subject.keywordAuthornanotechnology-
dc.subject.keywordAuthorcellular uptake-
dc.subject.keywordAuthornanoparticles-
dc.subject.keywordAuthorstructure-function relationship-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE