Understanding the Origin of Formation and Active Sites for Thiomolybdate [Mo3S13](2-) Clusters as Hydrogen Evolution Catalyst through the Selective Control of Sulfur Atoms

Authors
Lee, Cheol-HoLee, SunghoLee, Youn-KiJung, Yong ChaeKo, Yong-IlLee, Doh C.Joh, Han-Ik
Issue Date
2018-06
Publisher
AMER CHEMICAL SOC
Citation
ACS CATALYSIS, v.8, no.6, pp.5221 - 5227
Abstract
[Mo3S13](2-) clusters have become known as one of the most efficient catalysts for the hydrogen evolution reaction (HER) because most of the sulfur (S) atoms in the cluster are exposed, resulting in many active sites. However, the origin of the cluster formation and active S sites in the cluster is unknown, hindering the development of efficient catalysts. Herein, the mechanism of the transition from amorphous MoS3 to [Mo3S13](2-) clusters is systematically investigated. In addition, the active S sites have been identified by the selective removal of S atoms via low-temperature heat treatment. In summary, we believe that the clusters grow from amorphous MoS3 with apical S atoms, and bridging S atoms are the active HER sites in the [Mo3S13](2-) clusters. The clusters deposited on carbon nanotubes exhibited good electrochemical HER activity with a low onset potential of 96 mV, a Tafel slope of 40 mV/decade, and stability for 1000 cycles.
Keywords
AMORPHOUS MOLYBDENUM SULFIDE; EDGE SITES; MOS2; OXIDATION; ELECTROCATALYSIS; DECOMPOSITION; GRAPHENE; KINETICS; OXYGEN; H-2; AMORPHOUS MOLYBDENUM SULFIDE; EDGE SITES; MOS2; OXIDATION; ELECTROCATALYSIS; DECOMPOSITION; GRAPHENE; KINETICS; OXYGEN; H-2; active site; carbon nanotube; hydrogen production; MoS3; Mo3S13; thermal treatment
ISSN
2155-5435
URI
https://pubs.kist.re.kr/handle/201004/121299
DOI
10.1021/acscatal.8b01034
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE