Full metadata record

DC Field Value Language
dc.contributor.authorKim, Seong Keun-
dc.contributor.authorPopovici, Mihaela-
dc.date.accessioned2024-01-19T23:01:05Z-
dc.date.available2024-01-19T23:01:05Z-
dc.date.created2021-09-03-
dc.date.issued2018-05-
dc.identifier.issn0883-7694-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121445-
dc.description.abstractDynamic random-access memory (DRAM) is the main memory in most current computers. The excellent scalability of DRAM has significantly contributed to the development of modern computers. However, DRAM technology now faces critical challenges associated with further scaling toward the similar to 10-nm technology node. This scaling will likely end soon because of the inherent limitations of charge-based memory. Much effort has been dedicated to delaying this. Novel cell architectures have been designed to reduce the cell area, and new materials and process technologies have been extensively investigated, especially for dielectrics and electrodes related to charge storage. In this article, the current issues, recent progress in and the future of DRAM materials, and fabrication technologies are discussed.-
dc.languageEnglish-
dc.publisherCAMBRIDGE UNIV PRESS-
dc.subjectATOMIC LAYER DEPOSITION-
dc.subjectSRTIO3 THIN-FILMS-
dc.subjectEQUIVALENT OXIDE THICKNESS-
dc.subjectINITIAL GROWTH-BEHAVIOR-
dc.subjectDOPED TIO2 FILMS-
dc.subjectELECTRICAL-PROPERTIES-
dc.subjectDIELECTRIC-CONSTANT-
dc.subjectRU ELECTRODE-
dc.subjectNM-
dc.subjectPLASMA-
dc.titleFuture of dynamic random-access memory as main memory-
dc.typeArticle-
dc.identifier.doi10.1557/mrs.2018.95-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMRS BULLETIN, v.43, no.5, pp.334 - 339-
dc.citation.titleMRS BULLETIN-
dc.citation.volume43-
dc.citation.number5-
dc.citation.startPage334-
dc.citation.endPage339-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000432178500012-
dc.identifier.scopusid2-s2.0-85047326517-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeReview-
dc.subject.keywordPlusATOMIC LAYER DEPOSITION-
dc.subject.keywordPlusSRTIO3 THIN-FILMS-
dc.subject.keywordPlusEQUIVALENT OXIDE THICKNESS-
dc.subject.keywordPlusINITIAL GROWTH-BEHAVIOR-
dc.subject.keywordPlusDOPED TIO2 FILMS-
dc.subject.keywordPlusELECTRICAL-PROPERTIES-
dc.subject.keywordPlusDIELECTRIC-CONSTANT-
dc.subject.keywordPlusRU ELECTRODE-
dc.subject.keywordPlusNM-
dc.subject.keywordPlusPLASMA-
dc.subject.keywordAuthornanoscale-
dc.subject.keywordAuthormemory-
dc.subject.keywordAuthordielectric-
dc.subject.keywordAuthormetallic conductor-
dc.subject.keywordAuthoratomic layer deposition-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE