Soft self-assembly of Weyl materials for light and sound

Authors
Fruchart, MichelJeon, Seung-YeolHur, KahyunCheianov, VadimWiesner, UlrichVitelli, Vincenzo
Issue Date
2018-04-17
Publisher
NATL ACAD SCIENCES
Citation
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, v.115, no.16, pp.E3655 - E3664
Abstract
Soft materials can self-assemble into highly structured phases that replicate at the mesoscopic scale the symmetry of atomic crystals. As such, they offer an unparalleled platform to design mesostructured materials for light and sound. Here, we present a bottom-up approach based on self-assembly to engineer 3D photonic and phononic crystals with topologically protected Weyl points. In addition to angular and frequency selectivity of their bulk optical response, Weyl materials are endowed with topological surface states, which allow for the existence of one-way channels, even in the presence of time-reversal invariance. Using a combination of group-theoretical methods and numerical simulations, we identify the general symmetry constraints that a self-assembled structure has to satisfy to host Weyl points and describe how to achieve such constraints using a symmetry-driven pipeline for self-assembled material design and discovery. We illustrate our general approach using block copolymer self-assembly as a model system.
Keywords
BLOCK-COPOLYMERS; PHOTONIC CRYSTALS; ENERGY-BANDS; FERMI ARCS; POINTS; PHASE; LATTICE; SURFACE; STATES; NODES; BLOCK-COPOLYMERS; PHOTONIC CRYSTALS; ENERGY-BANDS; FERMI ARCS; POINTS; PHASE; LATTICE; SURFACE; STATES; NODES; topological matter; metamaterials; polymers; colloids; semimetal
ISSN
0027-8424
URI
https://pubs.kist.re.kr/handle/201004/121470
DOI
10.1073/pnas.1720828115
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE