Tungsten Carbide as a Highly Efficient Catalyst for Polysulfide Fragmentations in Li-S Batteries

Authors
Choi, JihwanJeong, Tae-GyungCho, Byung WonJung, YousungOh, Si HyoungKim, Yong-Tae
Issue Date
2018-04-12
Publisher
American Chemical Society
Citation
The Journal of Physical Chemistry C, v.122, no.14, pp.7664 - 7669
Abstract
The sluggish disproportionation of short-chain lithium polysulfides, Li2Sx is known to be one of the major causes to limit the rate capability of lithium sulfur batteries. Herein, we report that tungsten carbide not only affords strong sulfiphilic surface moieties but also provides an efficient catalysis to enhance the polysulfide fragmentation, leading to a drastic improvement in the electrode kinetics. We show that tungsten carbide acts as a superb anchoring material for the long-chain polysulfide and also promotes the dissociation of short-chain polysulfide during the electroreduction process. This leads to a high-rate performance of the composite cathode loaded with tungsten carbide, delivering a markedly enhanced discharge capacity of 780 mA h g(-1) at a high current rate of 5 C, when it is applied with a combination of a carbon-coated separator for the polysulfide confinement. Hence, this work presents a new strategic approach for a high-power lithium-sulfur battery.
Keywords
LITHIUM-SULFUR BATTERIES; LONG CYCLE LIFE; MESOPOROUS CARBON; CATHODE MATERIALS; REDOX REACTIONS; PERFORMANCE; COMPOSITES; CHALLENGES; INTERLAYER; SEPARATOR; LITHIUM-SULFUR BATTERIES; LONG CYCLE LIFE; MESOPOROUS CARBON; CATHODE MATERIALS; REDOX REACTIONS; PERFORMANCE; COMPOSITES; CHALLENGES; INTERLAYER; SEPARATOR; lithium; sulfur; catalyst; tungsten carbide; polysulfide
ISSN
1932-7447
URI
https://pubs.kist.re.kr/handle/201004/121479
DOI
10.1021/acs.jpcc.8b02096
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE