Full metadata record

DC Field Value Language
dc.contributor.authorLee, Ki-Heon-
dc.contributor.authorHan, Chang-Yeol-
dc.contributor.authorJang, Eun-Pyo-
dc.contributor.authorJo, Jung-Ho-
dc.contributor.author홍승기-
dc.contributor.authorHwang, Jun Yeon-
dc.contributor.authorChoi, Eunsoo-
dc.contributor.authorHwang, Jin-Ha-
dc.contributor.authorYang, Heesun-
dc.date.accessioned2024-01-19T23:03:11Z-
dc.date.available2024-01-19T23:03:11Z-
dc.date.created2021-09-03-
dc.date.issued2018-04-
dc.identifier.issn2040-3364-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121556-
dc.description.abstractTo date, most of the studies on quantum dot-light-emitting diodes (QLEDs) have been dedicated to the fabrication of high-efficiency monochromatic devices. However, for the ultimate application of QLEDs to the next-generation display devices, QLEDs should possess a full-color emissivity. In this study, we report the fabrication of all-solution-processed full-color-capable white QLEDs with a standard device architecture, where sequentially stacked blue (B)/green (G)/red (R) quantum dot (QD)-emitting layers (EMLs) are sandwiched by poly(9-vinylcarbazole) as the hole transport layer and ZnO nanoparticles (NPs) as the electron transport layer. To produce interlayer mixing-free, well-defined B/G/R QD layering assemblies via successive spin casting, an ultrathin ZnO NP buffer is inserted between different-colored QD layers. The present full-color-capable white QLED exhibits high device performance with the maximum values of 16241 cd m(-2) for luminance and 6.8% for external quantum efficiency. The promising results indicate that our novel EML design of ZnO NP buffer-mediated QD layer stacking may afford a viable means towards bright, efficient full-color-capable white devices.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.titleFull-color capable light-emitting diodes based on solution-processed quantum dot layer stacking-
dc.typeArticle-
dc.identifier.doi10.1039/c8nr00307f-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNanoscale, v.10, no.14, pp.6300 - 6305-
dc.citation.titleNanoscale-
dc.citation.volume10-
dc.citation.number14-
dc.citation.startPage6300-
dc.citation.endPage6305-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000429530400008-
dc.identifier.scopusid2-s2.0-85045137794-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGHLY EFFICIENT-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusDEVICES-
dc.subject.keywordPlusMULTILAYER-
dc.subject.keywordAuthorQD-
dc.subject.keywordAuthorLED-
dc.subject.keywordAuthorFull color-
dc.subject.keywordAuthorLayer structure-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE