Effect of pulse electrodeposition parameters on electrocatalytic the activity of methanol oxidation and morphology of Pt/C catalyst for direct methanol fuel cells

Authors
Ye, FengXu, ChaoLiu, GuichengYuan, MengdiWang, ZhimingDu, XiaozeLee, Joong Kee
Issue Date
2018-03-15
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Citation
ENERGY CONVERSION AND MANAGEMENT, v.160, pp.85 - 92
Abstract
The electrodeposition technique for preparing direct methanol fuel cell electrodes has been developed to increase the Pt utilization and lower the Pt loading. The performance of the Pt/C electrode for methanol oxidation reaction (MOR) was optimized by adjusting the electrodeposition parameters such as applied electrical signal types, ratios of t(on)/t(off) deposition temperatures, and electrolyte concentrations, systematically. Furthermore, the effects of two kinds of additives, i.e. polyethylene glycol (PEG) and sodium dodecyl sulfonate (SDS), on the catalytic performance and morphology of Pt catalyst were investigated for MOR by SEM, XRD, cyclic voltammetry and linear sweep voltammetry. The results show that the optimal Pt catalyst has been prepared by the square wave current method with t(on)/t(off) of 1 s/5 s at 30 degrees C in a 1.0 mmol L-1 H2PtCl6 solution with a 10(-4) mmol L-1 PEG additive. Moreover, the effect of the additive type and amount on the formation mechanism of the Pt crystallite morphology has also been discussed. From the results, introducing additives into the deposition solution in the pulse electrodeposition process is useful for designing and fabricating electrocatalytic electrodes for direct methanol fuel cells.
Keywords
PERFORMANCE; ELECTROOXIDATION; NANOPARTICLES; MEMBRANE; GRAPHENE; CARBON; LAYER; FILMS; PERFORMANCE; ELECTROOXIDATION; NANOPARTICLES; MEMBRANE; GRAPHENE; CARBON; LAYER; FILMS; Direct methanol fuel cell; Pt catalyst; Electrodeposition parameter; Methanol oxidation reaction; Electrical signal
ISSN
0196-8904
URI
https://pubs.kist.re.kr/handle/201004/121598
DOI
10.1016/j.enconman.2018.01.027
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE