Facile Nondestructive Assembly of Tyrosine-Rich Peptide Nanofibers as a Biological Glue for Multicomponent-Based Nanoelectrode Applications
- Authors
- Min, Kyoung-Ik; Lee, Seung-Woo; Lee, Eun-Hee; Lee, Yoon-Sik; Yi, Hyunjung; Kim, Dong-Pyo
- Issue Date
- 2018-03-14
- Publisher
- WILEY-V C H VERLAG GMBH
- Citation
- ADVANCED FUNCTIONAL MATERIALS, v.28, no.11
- Abstract
- Achieving the nondestructive assembly of carbon nanoelectrodes with multiple components in a scalable manner enables effective electrical interfaces among nanomaterials. Here, a facile nondestructive multiscale assembly of multicomponent nanomaterials using self-assembled tyrosine-rich peptide nanofibers (TPFs) as a biological glue is reported. The versatile functionalities of the rationally devised tyrosine-rich short peptide allow for (1) self-assembly of the peptide into nanofibers using noncovalent interactions, followed by (2) immobilization of spatially distributed metal nanoparticles on the nanofiber surface, and (3) subsequent assembly with graphitic nanomaterials into a percolated network-structure. This percolated network-structure of silver nanoparticle (AgNP)-decorated peptide nanofibers with imbedded single-walled carbon nanotubes (SWNTs) proves to be a versatile nanoelectrode platform with excellent processability. The SWNT-TPF-AgNP assembly, when utilized as a flexible and transparent multicomponent electronic film, was quite effective for enhancing direct electron transfer (DET) as verified for a third-generation glucose sensor composed of this film. The simple solution process used to produce the functional nanomaterials could provide a new platform for scalable manufacturing of novel nanoelectrode materials forming effective electrical contacts with molecules from diverse biological systems.
- Keywords
- WALLED CARBON NANOTUBES; DIRECT ELECTRON-TRANSFER; FIELD-EFFECT-TRANSISTOR; GLUCOSE-OXIDASE; DIRECT ELECTROCHEMISTRY; METAL NANOPARTICLES; FUNCTIONAL NANOMATERIALS; DIPHENYLALANINE PEPTIDE; NONINVASIVE MEASUREMENT; SILVER NANOPARTICLES; WALLED CARBON NANOTUBES; DIRECT ELECTRON-TRANSFER; FIELD-EFFECT-TRANSISTOR; GLUCOSE-OXIDASE; DIRECT ELECTROCHEMISTRY; METAL NANOPARTICLES; FUNCTIONAL NANOMATERIALS; DIPHENYLALANINE PEPTIDE; NONINVASIVE MEASUREMENT; SILVER NANOPARTICLES; glucose sensors; nondestructive assembly; peptides; single-walled nanotubes (SWNT); tyrosine
- ISSN
- 1616-301X
- URI
- https://pubs.kist.re.kr/handle/201004/121605
- DOI
- 10.1002/adfm.201705729
- Appears in Collections:
- KIST Article > 2018
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.