Full metadata record

DC Field Value Language
dc.contributor.authorJu, Gun wu-
dc.contributor.authorKim, Hansung-
dc.contributor.authorShim, Jae Phil-
dc.contributor.authorKim, Seong Kwang-
dc.contributor.authorLee, Byeong-Hyeon-
dc.contributor.authorWon, Sung Ok-
dc.contributor.authorKim, Sanghyeon-
dc.contributor.authorKim, Hyung-jun-
dc.date.accessioned2024-01-19T23:04:55Z-
dc.date.available2024-01-19T23:04:55Z-
dc.date.created2021-09-03-
dc.date.issued2018-03-
dc.identifier.issn0040-6090-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121648-
dc.description.abstractThe anisotropic surface morphology of a tensile-strained In0.42Al0.58As layer grown on an InP(100) substrate was investigated by means of observing the cross-hatch patterns between two orthogonal in-plane directions: [011] and [0 (1) over bar1]. Analysis results using atomic force microscopy evidently reveal a higher array density along direction [011], with an asymmetrically sharp ridge across each array. Conversely, there was a much lower array density along direction [0 (1) over bar1] and a symmetrically big mound-like ridges. Our X-ray diffraction and energy-dispersive spectroscopy analyses showed a more substantial amount of strain relaxation along direction [0 (1) over bar1] due to preferential indium incorporation along [011]. As a result, the big mound ridges over the arrays along direction [0 (1) over bar1] were believed to be the result of local indium accumulation. Additionally, microcrack formations, penetrating into substrates, were exclusively formed on top of the mound ridges with central depressions along direction [0 (1) over bar1], presumably causing additional anisotropic strain relaxation.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.titleAnisotropic surface morphology in a tensile-strained InAlAs layer grown on InP(100) substrates-
dc.typeArticle-
dc.identifier.doi10.1016/j.tsf.2018.01.026-
dc.description.journalClass1-
dc.identifier.bibliographicCitationTHIN SOLID FILMS, v.649, pp.38 - 42-
dc.citation.titleTHIN SOLID FILMS-
dc.citation.volume649-
dc.citation.startPage38-
dc.citation.endPage42-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000427524100007-
dc.identifier.scopusid2-s2.0-85041446968-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusCROSS-HATCH SURFACE-
dc.subject.keywordPlusGAAS 001-
dc.subject.keywordPlusHETEROSTRUCTURES-
dc.subject.keywordPlusDISLOCATION-
dc.subject.keywordPlusINGAAS-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusSI(001)-
dc.subject.keywordAuthorEpitaxial growth-
dc.subject.keywordAuthorIII-V compound semiconductor-
dc.subject.keywordAuthorCross-hatch array-
dc.subject.keywordAuthorPreferential surface diffusion-
dc.subject.keywordAuthorMicrocrack-
dc.subject.keywordAuthorAnisotropic strain relaxation-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE