Ultrastrong Graphene-Copper Core-Shell Wires for High-Performance Electrical Cables

Authors
Kim, Sang JinShin, Dong HeonChoi, Yong SeokRho, HokyunPark, MinMoon, Byung JoonKim, YoungsooLee, Seuoung-KiLee, Dong SuKim, Tae-WookLee, Sang HyunKim, Keun SooHong, Byung HeeBae, Sukang
Issue Date
2018-03
Publisher
AMER CHEMICAL SOC
Citation
ACS NANO, v.12, no.3, pp.2803 - 2808
Abstract
Recent development in mobile electronic devices and electric vehicles requires electrical wires with reduced weight as well as enhanced stability. In addition, since electric energy is mostly generated from power plants located far from its consuming places, mechanically stronger and higher electric power transmission cables are strongly demanded. However, there has been no alternative materials that can practically replace copper materials. Here, we report a method to prepare ultrastrong graphene fibers (GFs)-Cu core-shell wires with significantly enhanced electrical and mechanical properties. The core GFs are synthesized by chemical vapor deposition, followed by electroplating of Cu shells, where the large surface area of GFs in contact with Cu maximizes the mechanical toughness of the core-shell wires. At the same time, the unique electrical and thermal characteristics of graphene allow a similar to 10 times higher current density limit, providing more efficient and reliable delivery of electrical energies through the GFs-Cu wires. We believe that our results would be useful to overcome the current limit in electrical wires and cables for lightweight, energy-saving, and high-power applications.
Keywords
THERMAL-PROPERTIES; CARBON; FIBER; FILM; COMPOSITE; AMPACITY; THERMAL-PROPERTIES; CARBON; FIBER; FILM; COMPOSITE; AMPACITY; graphene fibers; copper; electroplating; tensile strength; ampacity (maximum current density)
ISSN
1936-0851
URI
https://pubs.kist.re.kr/handle/201004/121664
DOI
10.1021/acsnano.8b00043
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE