Full metadata record

DC Field Value Language
dc.contributor.authorJeon, Seongbeom-
dc.contributor.authorSubbiah, Ramesh-
dc.contributor.authorBonaedy, Taufik-
dc.contributor.authorVan, Seyoung-
dc.contributor.authorPark, Kwideok-
dc.contributor.authorYun, Kyusik-
dc.date.accessioned2024-01-19T23:31:54Z-
dc.date.available2024-01-19T23:31:54Z-
dc.date.created2021-09-03-
dc.date.issued2018-02-
dc.identifier.issn0021-9541-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121741-
dc.description.abstractMagnetic nanoparticles (MNPs) are used as contrast agents and targeted drug delivery systems (TDDS) due to their favorable size, surface charge, and magnetic properties. Unfortunately, the toxicity associated with MNPs limits their biological applications. Surface functionalization of MNPs with selective polymers alters the surface chemistry to impart better biocompatibility. We report the preparation of surface functionalized MNPs using iron oxide NPs (MNPs), poly (lactic-co-glycolic acid) (PLGA), and sodium alginate via co-precipitation, emulsification, and electro-spraying, respectively. The NPs are in the nanosize range and negatively charged. Morphological and structural analyses affirm the surface functionalized nanostructure of the NPs. The surface functionalized MNPs are biocompatible, and demonstrate enhanced intracellular delivery under an applied magnetic field (H), which evinces the targeting ability of MNPs. After NP treatment, the physico-mechanical properties of fibroblasts are decided by the selective MNP uptake under on or off magnetic field conditions. We envision potential use of biocompatible surface functionalized MNP for intracellular-, targeted-DDS, imaging, and for investigating cellular mechanics.-
dc.languageEnglish-
dc.publisherWILEY-
dc.subjectIRON-OXIDE NANOPARTICLES-
dc.subjectEXTRACELLULAR-MATRIX-
dc.subjectDRUG-DELIVERY-
dc.subjectQUANTUM DOTS-
dc.subjectFATE-
dc.subjectDIFFERENTIATION-
dc.subjectHYPERTHERMIA-
dc.subjectHYDROGELS-
dc.subjectRELEASE-
dc.titleSurface functionalized magnetic nanoparticles shift cell behavior with on/off magnetic fields-
dc.typeArticle-
dc.identifier.doi10.1002/jcp.25980-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF CELLULAR PHYSIOLOGY, v.233, no.2, pp.1168 - 1178-
dc.citation.titleJOURNAL OF CELLULAR PHYSIOLOGY-
dc.citation.volume233-
dc.citation.number2-
dc.citation.startPage1168-
dc.citation.endPage1178-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000414593500040-
dc.identifier.scopusid2-s2.0-85020213953-
dc.relation.journalWebOfScienceCategoryCell Biology-
dc.relation.journalWebOfScienceCategoryPhysiology-
dc.relation.journalResearchAreaCell Biology-
dc.relation.journalResearchAreaPhysiology-
dc.type.docTypeArticle-
dc.subject.keywordPlusIRON-OXIDE NANOPARTICLES-
dc.subject.keywordPlusEXTRACELLULAR-MATRIX-
dc.subject.keywordPlusDRUG-DELIVERY-
dc.subject.keywordPlusQUANTUM DOTS-
dc.subject.keywordPlusFATE-
dc.subject.keywordPlusDIFFERENTIATION-
dc.subject.keywordPlusHYPERTHERMIA-
dc.subject.keywordPlusHYDROGELS-
dc.subject.keywordPlusRELEASE-
dc.subject.keywordAuthoratomic force microscopy-
dc.subject.keywordAuthorcell stiffness-
dc.subject.keywordAuthorcytotoxicity-
dc.subject.keywordAuthorinterface-
dc.subject.keywordAuthormagentic nanoparticles-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE