Full metadata record

DC Field Value Language
dc.contributor.authorKim, In Gul-
dc.contributor.authorGil, Chang-Hyun-
dc.contributor.authorSeo, Joseph-
dc.contributor.authorPark, Soon-Jung-
dc.contributor.authorRamesh Subbiah-
dc.contributor.authorJung, Taek-Hee-
dc.contributor.authorKim, Jong Soo-
dc.contributor.authorJeong, Young-Hoon-
dc.contributor.authorChung, Hyung-Min-
dc.contributor.authorLee, Jong Ho-
dc.contributor.authorLee, Man Ryul-
dc.contributor.authorMoon, Sung-Hwan-
dc.contributor.authorPark, Kwideok-
dc.date.accessioned2024-01-19T23:33:52Z-
dc.date.available2024-01-19T23:33:52Z-
dc.date.created2021-09-03-
dc.date.issued2018-01-
dc.identifier.issn0142-9612-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121846-
dc.description.abstractCell-derived matrices (CDM) are becoming an attractive alternative to conventional biological scaffolding platforms due to its unique ability to closely recapitulate a native extracellular matrix (ECM) de novo. Although cell-substrate interactions are recognized to be principal in regulating stem cell behavior, very few studies have documented the acclimation of human pluripotent stem cells (hPSCs) on pristine and altered cell-derived matrices. Here, we investigate crosslink-induced mechanotransduction of hPSCs cultivated on decellularized fibroblast-derived matrices (FDM) to explore cell, adhesion, growth, migration, and pluripotency in various biological landscapes. The results showed either substrate-mediated induction or inhibition of the Epithelial-Mesenchymal-Transition (EMT) program, strongly suggesting that FDM stiffness can be a dominant factor in mediating hPSC plasticity. We further propose an optimal FDM substratum intended for long-term hPSC cultivation in a feeder-free niche-like microenvironment. This study carries significant implications for hPSC cultivation and encourages more in-depth studies towards the fundamentals of hPSC-CDM interactions. (C) 2017 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPergamon Press Ltd.-
dc.titleMechanotransduction of human pluripotent stem cells cultivated on tunable cell-derived extracellular matrix-
dc.typeArticle-
dc.identifier.doi10.1016/j.biomaterials.2017.10.016-
dc.description.journalClass1-
dc.identifier.bibliographicCitationBiomaterials, v.150, pp.100 - 111-
dc.citation.titleBiomaterials-
dc.citation.volume150-
dc.citation.startPage100-
dc.citation.endPage111-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000415781900008-
dc.identifier.scopusid2-s2.0-85031111577-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Biomaterials-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusEPITHELIAL-MESENCHYMAL TRANSITION-
dc.subject.keywordPlusSELF-RENEWAL-
dc.subject.keywordPlusCANCER-CELLS-
dc.subject.keywordPlusDIFFERENTIATION-
dc.subject.keywordPlusADHESION-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusFATE-
dc.subject.keywordPlusGENE-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE