Nano-sized metabolic precursors for heterogeneous tumor-targeting strategy using bioorthogonal click chemistry in vivo

Authors
Lee, SangminJung, SeulheeKoo, HeebeomNa, Jin HeeYoon, Hong YeolShim, Man KyuPark, JoohoKim, Jong-HoLee, SeulkiPomper, Martin G.Kwon, Ick ChanAhn, Cheol-HeeKim, Kwangmeyung
Issue Date
2017-12
Publisher
ELSEVIER SCI LTD
Citation
BIOMATERIALS, v.148, pp.1 - 15
Abstract
Herein, we developed nano-sized metabolic precursors (Nano-MPs) for new tumor-targeting strategy to overcome the intrinsic limitations of biological ligands such as the limited number of biological receptors and the heterogeneity in tumor tissues. We conjugated the azide group-containing metabolic precursors, triacetylated N-azidoacetyl-D-mannosamine to generation 4 poly(amidoamine) dendrimer backbone. The nano-sized dendrimer of Nano-MPs could generate azide groups on the surface of tumor cells homogeneously regardless of cell types via metabolic glycoengineering. Importantly, these exogenously generated 'artificial chemical receptors' containing azide groups could be used for bioorthogonal click chemistry, regardless of phenotypes of different tumor cells. Furthermore, in tumor-bearing mice models, Nano-MPs could be mainly localized at the target tumor tissues by the enhanced permeation and retention (EPR) effect, and they successfully generated azide groups on tumor cells in vivo after an intravenous injection. Finally, we showed that these azide groups on tumor tissues could be used as 'artificial chemical receptors' that were conjugated to bioorthogonal chemical group-containing liposomes via in vivo click chemistry in heterogeneous tumor-bearing mice. Therefore, overall results demonstrated that our nano-sized metabolic precursors could be extensively applied to new alternative tumor-targeting technique for molecular imaging and drug delivery system, regardless of the phenotype of heterogeneous tumor cells. (C) 2017 Elsevier Ltd. All rights reserved.
Keywords
GLYCOL CHITOSAN NANOPARTICLES; DRUG-DELIVERY; SIALIC-ACID; COPPER-FREE; ABERRANT GLYCOSYLATION; LIVING ANIMALS; CANCER; GLYCANS; CELLS; DENDRIMERS; GLYCOL CHITOSAN NANOPARTICLES; DRUG-DELIVERY; SIALIC-ACID; COPPER-FREE; ABERRANT GLYCOSYLATION; LIVING ANIMALS; CANCER; GLYCANS; CELLS; DENDRIMERS; Click chemistry; Polymerized metabolic precursors; Tumor heterogeneity; Metabolic glycoengineering; Tumor targeting
ISSN
0142-9612
URI
https://pubs.kist.re.kr/handle/201004/121981
DOI
10.1016/j.biomaterials.2017.09.025
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE