Immobilized mixed-culture reactor (IMcR) for hydrogen and methane production from glucose

Authors
Satar, IbdalDaud, Wan Ramli WanKim, Byung HongSomalu, Mahendra RaoGhasemi, Mostafa
Issue Date
2017-11
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Citation
ENERGY, v.139, pp.1188 - 1196
Abstract
Immobilized cell technology is a new technique to produce biogas. In the present study, an immobilized mixed-culture reactor (IMcR) in batch-mode operation was used for the production of hydrogen and methane simultaneously from glucose. Several factors, such as glucose concentration, temperature and fermentation time, were evaluated to determine the optimal conditions for hydrogen and methane production. Gas chromatography with a thermal conductivity detector (GC-TCD) and high-performance liquid chromatography (HPLC) were used to analyse the gas and effluent. The morphologies of the immobilized cells were characterized using scanning electron microscopy (SEM). The optimal conditions for hydrogen and methane production were obtained using a substrate with 5.0 g/L glucose at 60 degrees C for fermentation times of 48.0 h (hydrogen) and 72.0 h (methane). The maximum yields of hydrogen and methane at these optimal conditions were 37.0 +/- 0.0 (x10(-3)) mol/mol glu and 39.0 +/- 0.0 (x10(-3)) mol/mol glu, respectively. The chemical oxygen demand (COD) and pH gradually decreased with increasing fermentation time and temperature. However, the performance of the IMcR decreased over time due to cell damage and microorganism detachment from the cell. In conclusion, the IMcR system is a potential system for the simultaneous production of hydrogen and methane. (C) 2017 Elsevier Ltd. All rights reserved.
Keywords
IIT-BT 08; BIOHYDROGEN PRODUCTION; FERMENTATIVE HYDROGEN; ENTEROBACTER-AEROGENES; ANAEROBIC CULTURES; SEWAGE-SLUDGE; BIOREACTORS; SUBSTRATE; KINETICS; EFFLUENT; Immobilized mixed-culture reactor; Hydrogen; Methane; Glucose; Fermentation time
ISSN
0360-5442
URI
https://pubs.kist.re.kr/handle/201004/122088
DOI
10.1016/j.energy.2017.08.071
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE