Rhodium-Tin Binary Nanoparticle-A Strategy to Develop an Alternative Electrocatalyst for Oxygen Reduction

Authors
Ahn, MinjehCha, In YounCho, JinwonHam, Hyung ChulSung, Yung-EunYoo, Sung Jong
Issue Date
2017-09
Publisher
AMER CHEMICAL SOC
Citation
ACS CATALYSIS, v.7, no.9, pp.5796 - 5801
Abstract
A Rh-Sn nanoparticle is achieved by combinatorial approaches for application as an active and stable electrocatalyst in the oxygen reduction reaction. Both metallic Rh and metallic Sn exhibit activities too low to be utilized for electrocatalytic reduction of oxygen. However, a clean and active Rh surface can be activated by incorporation of Sn into a Rh nanoparticle through the combined effects of lateral repulsion, bifunctional mechanism, and electronic modification. The corrosion-resistant property of Rh contributes to the construction of a stable catalyst that can be used under harsh fuel cell conditions. Based on both theoretical and experimental research, Rh Sn nanoparticle designs with inexpensive materials can be a potential alternative catalyst in terms of the economic feasibility of commercialization and its facile and simple surfactant-free microwave-assisted synthesis.
Keywords
ALLOY NANOPARTICLES; ENHANCED ACTIVITY; PT-NI; STABILITY; PLATINUM; METAL; OXIDE; ELECTROREDUCTION; PERFORMANCE; CATALYSTS; ALLOY NANOPARTICLES; ENHANCED ACTIVITY; PT-NI; STABILITY; PLATINUM; METAL; OXIDE; ELECTROREDUCTION; PERFORMANCE; CATALYSTS; electrocatalyst; oxygen reduction; fuel cells; rhodium-tin; nanomaterial
ISSN
2155-5435
URI
https://pubs.kist.re.kr/handle/201004/122332
DOI
10.1021/acscatal.7b02402
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE