Fabrication of parabolic Si nanostructures by nanosphere lithography and its application for solar cells

Authors
Cheon, See-EunLee, Hyeon-seungChoi, JihyeJeong, Ah ReumLee, Taek SungJeong, Doo SeokLee, Kyeong-SeokLee, Wook-SeongKim, Won MokLee, HeonKim, Inho
Issue Date
2017-08-04
Publisher
NATURE PUBLISHING GROUP
Citation
SCIENTIFIC REPORTS, v.7
Abstract
We demonstrated fabrication of a parabola shaped Si nanostructures of various periods by combined approach of nanosphere lithography and a single step CF4/O-2 reactive ion etch (RIE) process. Silica nanosphere monolayers in a hexagonal array were well deposited by a solvent controlled spin coating technique based on binary organic solvents. We showed numerically that a parabolic Si nanostructure of an optimal period among various-shaped nanostructures overcoated with a dielectric layer of a 70 nm thickness provide the most effective antireflection. As the simulation results as a design guide, we fabricated the parabolic Si nanostructures of a 520 nm period and a 300 nm height exhibiting the lowest weighted reflectance of 2.75%. With incorporation of such parabolic Si nanostructures, a damage removal process for 20 sec and SiNx antireflection coating of a 70 nm thickness, the efficiency of solar cells increased to 17.2% while that of the planar cells without the nanostructures exhibited 16.2%. The efficiency enhancement of the cell with the Si nanostructures was attributed to the improved photocurrents arising from the broad spectral antireflection which was confirmed by the external quantum efficiency (EQE) measurements.
Keywords
HIGH-EFFICIENCY; SILICON NANOWIRE; BROAD-BAND; PARTICLES; DESIGN; HIGH-EFFICIENCY; SILICON NANOWIRE; BROAD-BAND; PARTICLES; DESIGN; Si solar cells; nanostrucure; light trapping; nanosphere lithography
ISSN
2045-2322
URI
https://pubs.kist.re.kr/handle/201004/122430
DOI
10.1038/s41598-017-07463-7
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE