Protein Mixture Segregation at Coffee-Ring: Real-Time Imaging of Protein Ring Precipitation by FTIR Spectromicroscopy

Authors
Choi, SunBirarda, Giovanni
Issue Date
2017-08-03
Publisher
AMER CHEMICAL SOC
Citation
JOURNAL OF PHYSICAL CHEMISTRY B, v.121, no.30, pp.7359 - 7365
Abstract
During natural drying process, all solutions and suspensions tend to form the so-called "coffee-ring" deposits. This phenomenon, by far, has been interpreted by the hydrodynamics of evaporating fluids. However, in this study, by applying Fourier transform infrared imaging (FTIRI), it is possible to observe the segregation and separation of a protein mixture at the "ring", hence we suggest a new way to interpret "coffee-ring effect" of solutions. The results explore the dynamic process that leads to the ring formation in case of model plasma proteins, such as BGG (bovine ? globulin), BSA (bovine serum albumin), and Hfib (human fibrinogen), and also report fascinating discovery of the segregation at the ring deposits of two model proteins BGG and BSA, which can be explained by an energy kinetic model, only. The investigation suggests that the coffee-ring effect of solute in an evaporating solution drop is driven by an energy gradient created from change of particle-water-air interfacial energy configuration.
Keywords
INFRARED-SPECTROSCOPY; PATTERN-FORMATION; EVAPORATION; DEPOSITION; STAINS; SUPPRESSION; ADSORPTION; CONVECTION; TRANSPORT; REVERSES; INFRARED-SPECTROSCOPY; PATTERN-FORMATION; EVAPORATION; DEPOSITION; STAINS; SUPPRESSION; ADSORPTION; CONVECTION; TRANSPORT; REVERSES
ISSN
1520-6106
URI
https://pubs.kist.re.kr/handle/201004/122432
DOI
10.1021/acs.jpcb.7b05131
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE