High-performance near-field electromagnetic wave attenuation in ultra-thin and transparent graphene films
- Authors
- Kang, Junmo; Kim, Donggyun; Kim, Youngsoo; Choi, Jae-Boong; Hong, Byung Hee; Kim, Sang Woo
- Issue Date
- 2017-06
- Publisher
- IOP PUBLISHING LTD
- Citation
- 2D MATERIALS, v.4, no.2
- Abstract
- Ultra-thin and transparent electromagnetic interference (EMI) shielding and absorbing materials are in increasing demand for near-field electromagnetic wave attenuation in transparent electronic devices that get thinner and lighter. Here, we report chemical-doped and undoped graphene as the thinnest and transparent shield for high-performance near-field electromagnetic wave attenuation. The electromagnetic loss characterization demonstrate that a single layer graphene film exhibits a giant magnetic field transmission loss normalized to the film thickness that is at least two orders of magnitude higher than those of conventional EMI shielding and absorbing materials, which is attributed to the outstanding magnetic field mirroring in graphene. The doped and double-layer graphene films exhibit superior power and transmission losses than the commercial transparent indium tin oxide shield over the frequency range from 0.1 GHz to 6 GHz. The high-performance near-field electromagnetic wave attenuation in graphene enables broad range applications such as futuristic transparent display devices.
- Keywords
- SHIELDING EFFECTIVENESS; GIGAHERTZ FREQUENCY; LIGHTWEIGHT; COMPOSITES; ABSORPTION; PAPER; SHIELDING EFFECTIVENESS; GIGAHERTZ FREQUENCY; LIGHTWEIGHT; COMPOSITES; ABSORPTION; PAPER; graphene; electromagnetic wave attenuation; EMI shielding and absorbing; chemical doping; transmission loss; power loss; transparent conductivie shields
- ISSN
- 2053-1583
- URI
- https://pubs.kist.re.kr/handle/201004/122678
- DOI
- 10.1088/2053-1583/aa533c
- Appears in Collections:
- KIST Article > 2017
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.