Enhanced electrochemical properties of boron functional groups on porous carbon nanofiber/MnO2 materials

Authors
Lee, Do GeumYang, Cheol-MinKim, Bo-Hye
Issue Date
2017-03-01
Publisher
ELSEVIER SCIENCE SA
Citation
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, v.788, pp.192 - 197
Abstract
Heteroatoms (B, N, O)-containing porous manganese oxide (MnO2)/carbon nanofiber (MnB-CNF) materials are prepared by one-step electrospinning method via polyacrylonitrile (PAN) and manganese(II) chloride (MnCl2) in dimethylformamide (DMF) solution containing different concentrations of B2O3. The MnB-CNF electrode exhibits optimized electrochemical behavior with a high energy density of 22.6 Whkg(-1) at a power density of 400 Wkg(-1) and a specific capacitance range of 210-160 Fg(-1) in the discharge current density range of 1.0 to 20 mAcm(-2) in aqueous KOH electrolyte. The higher electrochemical performance of MnB-CNF as a result of the electrochemical double-layer capacitor (EDLC), compared to regular Mn-CNF without B-based functional groups, is attributed to well-balanced meso-and micropores affecting the easy adsorption and transport of electrolyte ions, in addition to the pseudocapacitive redox reactions from MnO2, N, O, and extra numerous B in alkaline electrolytes. Thus, tailoring the pore structures with proper specific surface area, pore size, and number of heteroatoms is crucial for optimizing their electrochemical properties in the combined efforts to develop EDLCs and pseudocapacitance. (C) 2017 Elsevier B.V. All rights reserved.
Keywords
HIGH-PERFORMANCE SUPERCAPACITOR; CAPACITIVE PERFORMANCE; ACTIVATED CARBON; ELECTRODE; NANOTUBES; NITROGEN; HYBRIDS; OXIDE; FILM; HIGH-PERFORMANCE SUPERCAPACITOR; CAPACITIVE PERFORMANCE; ACTIVATED CARBON; ELECTRODE; NANOTUBES; NITROGEN; HYBRIDS; OXIDE; FILM; Heteroatoms; Mno(2); Carbon nanofiber; Electrical double -layer capacitor; Pseudocapacitor
ISSN
1572-6657
URI
https://pubs.kist.re.kr/handle/201004/122967
DOI
10.1016/j.jelechem.2017.01.059
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE