Enhanced electrochemical properties of boron functional groups on porous carbon nanofiber/MnO2 materials
- Authors
- Lee, Do Geum; Yang, Cheol-Min; Kim, Bo-Hye
- Issue Date
- 2017-03-01
- Publisher
- ELSEVIER SCIENCE SA
- Citation
- JOURNAL OF ELECTROANALYTICAL CHEMISTRY, v.788, pp.192 - 197
- Abstract
- Heteroatoms (B, N, O)-containing porous manganese oxide (MnO2)/carbon nanofiber (MnB-CNF) materials are prepared by one-step electrospinning method via polyacrylonitrile (PAN) and manganese(II) chloride (MnCl2) in dimethylformamide (DMF) solution containing different concentrations of B2O3. The MnB-CNF electrode exhibits optimized electrochemical behavior with a high energy density of 22.6 Whkg(-1) at a power density of 400 Wkg(-1) and a specific capacitance range of 210-160 Fg(-1) in the discharge current density range of 1.0 to 20 mAcm(-2) in aqueous KOH electrolyte. The higher electrochemical performance of MnB-CNF as a result of the electrochemical double-layer capacitor (EDLC), compared to regular Mn-CNF without B-based functional groups, is attributed to well-balanced meso-and micropores affecting the easy adsorption and transport of electrolyte ions, in addition to the pseudocapacitive redox reactions from MnO2, N, O, and extra numerous B in alkaline electrolytes. Thus, tailoring the pore structures with proper specific surface area, pore size, and number of heteroatoms is crucial for optimizing their electrochemical properties in the combined efforts to develop EDLCs and pseudocapacitance. (C) 2017 Elsevier B.V. All rights reserved.
- Keywords
- HIGH-PERFORMANCE SUPERCAPACITOR; CAPACITIVE PERFORMANCE; ACTIVATED CARBON; ELECTRODE; NANOTUBES; NITROGEN; HYBRIDS; OXIDE; FILM; HIGH-PERFORMANCE SUPERCAPACITOR; CAPACITIVE PERFORMANCE; ACTIVATED CARBON; ELECTRODE; NANOTUBES; NITROGEN; HYBRIDS; OXIDE; FILM; Heteroatoms; Mno(2); Carbon nanofiber; Electrical double -layer capacitor; Pseudocapacitor
- ISSN
- 1572-6657
- URI
- https://pubs.kist.re.kr/handle/201004/122967
- DOI
- 10.1016/j.jelechem.2017.01.059
- Appears in Collections:
- KIST Article > 2017
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.