Full metadata record

DC Field Value Language
dc.contributor.authorRadulaski, Marina-
dc.contributor.authorWidmann, Matthias-
dc.contributor.authorNiethammer, Matthias-
dc.contributor.authorZhang, Jingyuan Linda-
dc.contributor.authorLee, Sang-Yun-
dc.contributor.authorRendler, Torsten-
dc.contributor.authorLagoudakis, Konstantinos G.-
dc.contributor.authorSon, Nguyen Tien-
dc.contributor.authorJanzen, Erik-
dc.contributor.authorOhshima, Takeshi-
dc.contributor.authorWrachtrup, Joerg-
dc.contributor.authorVuckovic, Jelena-
dc.date.accessioned2024-01-20T02:02:53Z-
dc.date.available2024-01-20T02:02:53Z-
dc.date.created2021-09-01-
dc.date.issued2017-03-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/123024-
dc.description.abstractSilicon carbide is a promising platform for single photon sources, quantum bits (qubits), and nanoscale sensors based on individual color centers. Toward this goal, we develop a scalable array of nanopillars incorporating single silicon vacancy centers in 4H-SiC, readily available for efficient interfacing with free-space objective and lensed-fibers. A commercially obtained substrate is irradiated with 2 MeV electron beams to create vacancies. Subsequent lithographic process forms 800 nm tall nanopillars with 400-1400 nm diameters. We obtain high collection efficiency of up to 22 kcounts/s optical saturation rates from a single silicon vacancy center while preserving the single photon emission and the optically induced electron-spin polarization properties. Our study demonstrates silicon carbide as a readily available platform for scalable quantum phtonics architecture relying on single photon sources and qubits.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectSPINS-
dc.titleScalable Quantum Photonics with Single Color Centers in Silicon Carbide-
dc.typeArticle-
dc.identifier.doi10.1021/acs.nanolett.6b05102-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANO LETTERS, v.17, no.3, pp.1782 - 1786-
dc.citation.titleNANO LETTERS-
dc.citation.volume17-
dc.citation.number3-
dc.citation.startPage1782-
dc.citation.endPage1786-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000396185800067-
dc.identifier.scopusid2-s2.0-85014906173-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusSPINS-
dc.subject.keywordAuthorColor centers-
dc.subject.keywordAuthorsilicon carbide-
dc.subject.keywordAuthorphotonics-
dc.subject.keywordAuthorspintronics-
dc.subject.keywordAuthornanopillars-
dc.subject.keywordAuthorspin-qubits-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE