Full metadata record

DC Field Value Language
dc.contributor.authorYu, Jaesang-
dc.contributor.authorCha, Ji Eun-
dc.contributor.authorKim, Seong Yun-
dc.date.accessioned2024-01-20T02:04:05Z-
dc.date.available2024-01-20T02:04:05Z-
dc.date.created2021-09-01-
dc.date.issued2017-02-01-
dc.identifier.issn1359-8368-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/123088-
dc.description.abstractWe proposed a solvent-free melting process for fabricating high-conductivity polymer composite films filled with highly dispersed GNP fillers. The excellent dispersion of GNP fillers in the composite films was observed using X-ray micro-computed tomography (micro-CT), a non-destructive three-dimensional (3D) analysis technique that helps to analyze the internal structures of composite films with precision. The excellent dispersion of GNP fillers also confirmed by the fact that experimentally determined electrical and thermal conductivity values of the composite films were well consistent with the theoretical calculations obtained with a Mod-Tanaka method. The composite films exhibited an electrical conductivity on the order of 10(1) S/m and the in-plane thermal conductivity of 7.1 W/m.K when they contained 20 wt% GNP fillers. (C) 2016 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCI LTD-
dc.subjectCARBON-NANOTUBE COMPOSITES-
dc.subjectPOLYMER COMPOSITES-
dc.subjectEDDY-CURRENT-
dc.subjectTHERMOPLASTIC COMPOSITES-
dc.subjectSYNERGISTIC IMPROVEMENT-
dc.subjectELECTRICAL PERCOLATION-
dc.subjectTHEORETICAL APPROACH-
dc.subjectENHANCED DISPERSION-
dc.subjectHEAT-FLOW-
dc.subjectFIBER-
dc.titleThermally conductive composite film filled with highly dispersed graphene nanoplatelets via solvent-free one-step fabrication-
dc.typeArticle-
dc.identifier.doi10.1016/j.compositesb.2016.11.014-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCOMPOSITES PART B-ENGINEERING, v.110, pp.171 - 177-
dc.citation.titleCOMPOSITES PART B-ENGINEERING-
dc.citation.volume110-
dc.citation.startPage171-
dc.citation.endPage177-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000395841600019-
dc.identifier.scopusid2-s2.0-84995773096-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Composites-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusCARBON-NANOTUBE COMPOSITES-
dc.subject.keywordPlusPOLYMER COMPOSITES-
dc.subject.keywordPlusEDDY-CURRENT-
dc.subject.keywordPlusTHERMOPLASTIC COMPOSITES-
dc.subject.keywordPlusSYNERGISTIC IMPROVEMENT-
dc.subject.keywordPlusELECTRICAL PERCOLATION-
dc.subject.keywordPlusTHEORETICAL APPROACH-
dc.subject.keywordPlusENHANCED DISPERSION-
dc.subject.keywordPlusHEAT-FLOW-
dc.subject.keywordPlusFIBER-
dc.subject.keywordAuthorPolymer-matrix composites (PMCs)-
dc.subject.keywordAuthorThermal properties-
dc.subject.keywordAuthorNon-destructive testing-
dc.subject.keywordAuthorCompression moulding-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE