MoS2-Graphene-Mycosporine-Like Amino Acid Nanocomposite as Photocatalyst

Authors
Kim, Hyeong-UHa, SoohyunAmalnerkar, DineshKim, Sun-YoungAhn, ChisungLim, Yong TaikLee, Min-HoMoon, Byung JoonBae, SukangMoh, Sang HyunKulkarni, AtulKim, Taesung
Issue Date
2017-02
Publisher
성균나노과학기술원
Citation
NANO, v.12, no.2
Abstract
In the quest of extending isostructural hybridization approach to organic-inorganic nanocomposite-based photocatalytic systems, a unique strategy of replacing the traditional inorganic semiconductors with naturally produced mycosporine-like amino acids (MAA) is proposed. The main motivation of incorporating MAA in symbiotically configured nanocomposites is with regard to MAA green, nontoxic nature, UV absorption and photostability. Our facile one-pot solvothermal method is to facilitate the amalgamation of MAA and molybdenum disulfide-graphene (MG) composite at the molecular/nanoscale level to endow better photocatalytic functionality. It is observed that the rate of photocatalytic dye degradation of Rhodamine 6G (R6G) becomes consistently enhanced with an incremental increase in the concentration of MAA in MG. The combination of MG-MAA leads up to 81.2% quenching of the PL emission, as compared with MG. Noticeable decrease in PL lifetime from 280 ps (MG) to 77 ps (MG-MAA) explicitly implies fast charge extraction and transport of the charge carriers.
Keywords
ONE-POT SYNTHESIS; MOS2-GRAPHENE COMPOSITES; ABSORBING COMPOUNDS; HYDROGEN EVOLUTION; GRAPHENE; BIOSYNTHESIS; MYCOSPORINES; CATALYST; WATER; Mycosporine-like amino acids (MAA); MoS2; graphene; nanocomposite; photocatalyst
ISSN
1793-2920
URI
https://pubs.kist.re.kr/handle/201004/123094
DOI
10.1142/S1793292017500199
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE