Photosynthetic CO2 Conversion to Fatty Acid Ethyl Esters (FAEEs) Using Engineered Cyanobacteria
- Authors
- Lee, Hyun Jeong; Choi Jaeyeon; Lee, Sun-Mi; Um, Youngsoon; Sim, Sang Jun; Kim, Yunje; Woo, Han Min
- Issue Date
- 2017-02
- Publisher
- American Chemical Society
- Citation
- Journal of Agricultural and Food Chemistry, v.65, no.6, pp.1087 - 1092
- Abstract
- Metabolic engineering of cyanobacteria has received attention as a sustainable strategy to convert carbon dioxide to fatty acid-derived chemicals that are widely used in the food and chemical industries. Herein, Synechococcus elongatus PCC 7942, a model cyanobacterium, was engineered for the first time to produce fatty acid ethyl esters (FAEEs) from CO2. Due to the lack of an endogenous ethanol production pathway and wax ester synthase (AftA) activity in the wild-type cyanobacterium, we metabolically engineered S. elongatus PCC 7942 by expressing heterologous AftA and introducing the ethanol pathway, resulting in detectable peaks of FAEEs. To enhance FREE production, a heterologous phosphoketolase pathway was introduced in the FAEE-producing strain to supply acetyl-CoA. Subsequent optimization of the cyanobacterial culture with a hexadecane overlay resulted in engineered S. elongatus PCC 7942 that produced photosynthetic FAEEs (10.0 +/- 0.7 mg/L/OD730) from CO2. This paper is the first report of photosynthetic production of FAEEs from CO2 in cyanobacteria.
- Keywords
- ELONGATUS PCC 7942; SACCHAROMYCES-CEREVISIAE; TARGETED MUTAGENESIS; FUEL; EXPRESSION; PATHWAY; ETHANOL; cyanobacteria; metabolic engineering; fatty acid ethyl ester; CO2 conversion
- ISSN
- 0021-8561
- URI
- https://pubs.kist.re.kr/handle/201004/123118
- DOI
- 10.1021/acs.jafc.7b00002
- Appears in Collections:
- KIST Article > 2017
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.