Chemical vapor deposition of graphene on platinum: Growth and substrate interaction

Authors
Nam, JungtaeKim, Dong-ChulYun, HoyeolShin, Dong HoonNam, SeungjinLee, Won KiHwang, Jun YeonLee, Sang WookWeman, HelgeKim, Keun Soo
Issue Date
2017-01
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Citation
CARBON, v.111, pp.733 - 740
Abstract
Low-pressure chemical vapor deposition of graphene has been investigated on various Pt substrates such as e-beam deposited films, sputtered films, and polycrystalline foils. High temperature sputtering is found to be crucial in growing single layer graphene on Pt. It gives highly (111)-oriented crystallization with a significant reduction of dewetting in Pt films, in contrast to e-beam deposited Pt films. Graphene grown on high temperature sputtered Pt films is free of micro-sized multilayer graphene islands normally observed in graphene grown on polycrystalline Pt foils. This indicates that using Pt thin films can effectively suppress the multilayer graphene growth by carbon segregations and precipitations from the Pt bulk. Growth of single layer graphene is demonstrated on Pt films with a thickness down to 25 nm. Effects of the Pt substrates on the as-grown graphene have been investigated. An XY plot of the Raman G and 2D bands in graphene shows a correlation with the surface facet orientations of the Pt substrates measured by electron backscatter diffraction. With a general red shift of the G band distributions, a blue shift of the 2D band distributions is observed, which goes as high as similar to 2750 cm(-1) in graphene grown on Pt (111) films. (C) 2016 Elsevier Ltd. All rights reserved.
Keywords
RAMAN-SPECTROSCOPY; COPPER; FILMS; CARBON; SOLUBILITY; GRAPHITE; SURFACE; STRAIN; RAMAN-SPECTROSCOPY; COPPER; FILMS; CARBON; SOLUBILITY; GRAPHITE; SURFACE; STRAIN; graphene; defect; growth
ISSN
0008-6223
URI
https://pubs.kist.re.kr/handle/201004/123287
DOI
10.1016/j.carbon.2016.10.048
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE