Tandem Architecture of Perovskite and Cu(In,Ga)(S,Se)(2) Created by Solution Processes for Solar Cells

Authors
Lee, MinohPark, Se JinHwang, Yun JeongJun, YongseokMin, Byoung Koun
Issue Date
2016-12
Publisher
WILEY-V C H VERLAG GMBH
Citation
ADVANCED OPTICAL MATERIALS, v.4, no.12, pp.2102 - 2108
Abstract
Integrating tandem solar cell architectures into devices can improve their power conversion efficiency (PCE) by overcoming the limited incident light absorption range of a single absorber and reducing the thermalization loss. Here, fabricated tandem solar cells are successfully fabricated employing different absorber materials, in this case perovskite and Cu(In,Ga)(S,Se)(2) (CIGS) as top and bottom cells, respectively. For cost effectiveness most tandem device manufacturing processes are achieved by solution-based methods, which even provide the electrode layers. Using such a process to create a tandem device, a PCE of 8.34% for the semitransparent perovskite top solar cell and 2.48% for the CIGS bottom solar cell is obtained, resulting in an overall efficiency of 10.82% for the four-terminal tandem device. This result highlights the potential of this solution-based tandem configuration as a way to facilitate the creation of simple and inexpensive efficient light-utilizing solar cell devices.
Keywords
BASE ADDUCT; EFFICIENCY; NANOWIRE; ELECTRODES; LAYERS; BASE ADDUCT; EFFICIENCY; NANOWIRE; ELECTRODES; LAYERS; CIGS; perovskite; solar cells; solution process; tandem
ISSN
2195-1071
URI
https://pubs.kist.re.kr/handle/201004/123370
DOI
10.1002/adom.201600373
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE