Preparation of CoMo/Al2O3, CoMo/CeO2, CoMo/TiO2 catalysts using ultrasonic spray pyrolysis for the hydro-desulfurization of 4, 6-dimethyldibenzothiophene for fuel cell applications

Authors
Kim, Hyun KooLee, Chang-WhanKim, MinsooOh, Joo HyengSong, Shin AeJang, Seong-CheolYoon, Chang WonHan, JongheeYoon, Sung PiNam, Suk WooChoi, Dae-KiShul, Yong-gunHam, Hyung Chul
Issue Date
2016-11-02
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Citation
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, v.41, no.41, pp.18846 - 18857
Abstract
One of promising methods for removing the sulfur compounds from diesel fuel is hydro-desulfurization, in which the sulfur in diesel is hydrotreated by reaction with H-2 to liberate H2S. In hydrodesulfurization, a highly efficient catalyst is required fuel cell applications because the level of sulfur compounds should be below 0.1 ppm to allow stable molten carbonate fuel cell operation. In this study, we prepared the CoMo/Al2O3, CoMo/CeO2, CoMo/TiO2 catalysts using ultrasonic spray pyrolysis and the activities of synthesized catalysts toward the hydrodesulfurization of 4, 6-dimethyldibenzothiophene were examined using a flow reactor. First, our measurement results using X-ray diffraction, scanning electron microscope, field emission gun electron probe micro analyzer and transmission electron microscope suggested that the Co and Mo particles are uniformly distributed on the supports (Al2O3, CeO2, and TiO2) we considered. Second, from the analysis of surface properties using via Raman spectroscopy, we identified the characteristic phases (such as Ce2Mo3O13, MoO3, and CoMoO4 of each synthesized catalyst, which may significantly influence hydrodesulfurization reactivity. Finally, the evaluation of catalytic activity showed that the order of hydrodesulfurization activity is CoMo/CeO2 > CoMo/Al2O3> CoMo/TiO2. In particular, a CoMo/CeO2 catalyst exhibits the highest catalytic activity toward hydrodesulfurization, reducing the amount of 4, 6-dimethyldibenzothiophene from 10 ppm to about 0.1 ppm at 350 degrees C. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Keywords
DEEP DESULFURIZATION; RAMAN-SPECTROSCOPY; MO CATALYSTS; GAS OIL; CO-MO; DIESEL; HYDRODESULFURIZATION; ACTIVATION; DEEP DESULFURIZATION; RAMAN-SPECTROSCOPY; MO CATALYSTS; GAS OIL; CO-MO; DIESEL; HYDRODESULFURIZATION; ACTIVATION; Ultrasonic spray pyrolysis (USP); Hydrodesulfurization; 4, 6-dimethyldibenzothiophene (4, 6-DMDBT); Catalyst support; Fuel cell
ISSN
0360-3199
URI
https://pubs.kist.re.kr/handle/201004/123457
DOI
10.1016/j.ijhydene.2016.06.040
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE