Determination of the mechanism and extent of surface degradation in Ni-based cathode materials after repeated electrochemical cycling

Authors
Hwang, SooyeonKim, Se YoungChung, Kyung YoonStach, Eric A.Kim, Seung MinChang, Wonyoung
Issue Date
2016-09
Publisher
AMER INST PHYSICS
Citation
APL MATERIALS, v.4, no.9
Abstract
We take advantage of scanning transmission electron microscopy and electron energy loss spectroscopy to investigate the changes in near-surface electronic structure and quantify the degree of local degradation of Ni-based cathode materials with the layered structure (LiNi0.8Mn0.1Co0.1O2 and LiNi0.4Mn0.3Co0.3O2) after 20 cycles of delithiation and lithiation. Reduction of transition metals occurs in the near-surface region of cathode materials: Mn is the major element to be reduced in the case of relatively Mn-rich composition, while reduction of Ni ions is dominant in Ni-rich materials. The valences of Ni and Mn ions are complementary, i.e., when one is reduced, the other is oxidized in order to maintain charge neutrality. The depth of degradation zone is found to be much deeper in Ni-rich materials. This comparative analysis provides important insights needed for the devising of new cathode materials with high capacity as well as long lifetime. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license.
Keywords
LITHIUM-ION BATTERIES; ENERGY-LOSS SPECTROSCOPY; ELECTRON-MICROSCOPY; LI; OXIDES; CAPACITY; LI1.2NI0.2MN0.6O2; RECONSTRUCTION; PERFORMANCE; EVOLUTION; LITHIUM-ION BATTERIES; ENERGY-LOSS SPECTROSCOPY; ELECTRON-MICROSCOPY; LI; OXIDES; CAPACITY; LI1.2NI0.2MN0.6O2; RECONSTRUCTION; PERFORMANCE; EVOLUTION; surface degradation; cathode materials; scanning transmission electron microscopy; electron energy loss spectroscopy
ISSN
2166-532X
URI
https://pubs.kist.re.kr/handle/201004/123709
DOI
10.1063/1.4963723
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE