Chemiresistive Electronic Nose toward Detection of Biomarkers in Exhaled Breath

Authors
Moon, Hi GyuJung, YoungmoHan, Soo DeokShim, Young-SeokShin, BeomjuLee, TaikjinKim, Jin-SangLee, SeokJun, Seong ChanPark, Hyung-HoKim, ChulkiKang, Chong-Yun
Issue Date
2016-08-17
Publisher
American Chemical Society
Citation
ACS Applied Materials & Interfaces, v.8, no.32, pp.20969 - 20976
Abstract
Detection of gas-phase chemicals finds a wide variety of applications, including food and beverages, fragrances, environmental monitoring, chemical and biochemical processing, medical diagnostics, and transportation. One approach for these tasks is to use arrays of highly sensitive and selective sensors as an electronic nose. Here, we present a high performance chemiresistive electronic nose (CEN) based on an array of metal oxide thin films, metal-catalyzed thin films, and nanostructured thin films. The gas sensing properties of the CEN show enhanced sensitive detection of H2S, NH3, and NO in an 80% relative humidity (RH) atmosphere similar to the composition of exhaled breath. The detection limits of the sensor elements we fabricated are in the following ranges: 534 ppt to 2.87 ppb for H2S, 4.45 to 42.29 ppb, for NH3, and 206 ppt to 2.06 ppb for NO. The enhanced sensitivity is attributed to the spillover effect by Au nanoparticles and the high porosity of villi-like nanostructures, pioviding a large surface-to-volume ratio. The remarkable selectivity based on the collection of sensor responses manifests itself in the principal component analysis (PCA). The excellent sensing performance indicates that the CEN can detect the biomarkers of H2S, NH3, and NO in exhaled breath and even distinguish them clearly in the PC:A. Our results show high potential of the CEN as an inexpensive and noninvasive diagnostic tool for halitosis, kidney disorder, and asthma.
Keywords
VOLATILE ORGANIC-COMPOUNDS; GAS SENSOR APPLICATIONS; NITRIC-OXIDE; GOLD NANOPARTICLES; SENSING PROPERTIES; NANOSTRUCTURES; WO3; SPECTROMETRY; TECHNOLOGY; ANALYZERS; VOLATILE ORGANIC-COMPOUNDS; GAS SENSOR APPLICATIONS; NITRIC-OXIDE; GOLD NANOPARTICLES; SENSING PROPERTIES; NANOSTRUCTURES; WO3; SPECTROMETRY; TECHNOLOGY; ANALYZERS; nanostructural thin film metal oxides; electronic nose; chemiresistive sensor; sensor array; exhaled breath analyzer; noninvasive diagnostic tool; biomarkers
ISSN
1944-8244
URI
https://pubs.kist.re.kr/handle/201004/123783
DOI
10.1021/acsami.6b03256
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE