Glancing angle deposited WO3 nanostructures for enhanced sensitivity and selectivity to NO2 in gas mixture

Authors
Moon, Hi GyuHan, Soo DeokKang, Min-GyuJung, Woo-SukKwon, BeomjinKim, ChulkiLee, TaikjinLee, SeokBaek, Seoung-HyubKim, Jin-SangPark, Hyung-HoKang, Chong-Yun
Issue Date
2016-06-28
Publisher
ELSEVIER SCIENCE SA
Citation
SENSORS AND ACTUATORS B-CHEMICAL, v.229, pp.92 - 99
Abstract
We report the facile synthesis and the chemoresistive performances of villi-like WO3 nanostructures (VLWNs) which were fabricated by RF sputter with glancing angle deposition (GAD) mode. A fast deposition of GAD effectively forms self-assembled anisotropic nanostructures with high porosity and surface-to-volume ratio. The sensing tests were examined for NO2 detection in dry air and a mixture of reducing gases. As a result, these sensors at 200 degrees C exhibit an highly selective and sensitive NO2 detection down to 800 parts per trillion (ppt) level, and could also respond well to NO2 in the concentration range of 0.2-1 parts per million (ppm) without the interference of gas mixture. These results show that the enhanced sensing properties to NO2 are attributed to the highly efficient surface modulation by double potential barriers at nano-necks of WO3 nanostructures. (C) 2016 Elsevier B.V. All rights reserved.
Keywords
OXIDE; GROWTH; OXIDE; GROWTH; Chemoresistive NO2 sensors; Tungsten oxide; Glancing angle deposition; Villi-like nanostructures; Nano-necks
ISSN
0925-4005
URI
https://pubs.kist.re.kr/handle/201004/123945
DOI
10.1016/j.snb.2016.01.084
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE