Hydrodeoxygenation of lignin-derived monomers and lignocellulose pyrolysis oil on the carbon-supported Ru catalysts

Authors
Dwiatmoko, Adid AdepZhou, LipengKim, InhoChoi, Jae-WookSuh, Dong JinHa, Jeong-Myeong
Issue Date
2016-05-01
Publisher
ELSEVIER SCIENCE BV
Citation
CATALYSIS TODAY, v.265, pp.192 - 198
Abstract
Five carbon materials, including multi-walled carbon nanotubes (MWCNT), carbon aerogel (CARF), carbon black (Vulcan carbon), activated carbon (AC), and graphite, were used as supports of the carbon-supported Ru catalysts, and the hydrodeoxygenation of lignin-derived monomers and lignocellulose pyrolysis oil was performed. Ru/MWCNT exhibited the highest deoxygenation activity, and the origin of the improved catalytic activity was studied. The metal dispersion, the acidity as measured by means of temperature programmed desorption, the pore structure, and the surface area were investigated in an effort to understand the catalysis results. We observed that the quantity of accessible Ru nanoparticles on the mesopores determined the hydrodeoxygenation activity. (C) 2015 Elsevier B.V. All rights reserved.
Keywords
BIO-OIL; GUAIACOL HYDRODEOXYGENATION; PHENOLIC-COMPOUNDS; ACTIVATED CARBON; MODEL COMPOUNDS; BIOMASS; FUELS; NI; HYDROTREATMENT; STABILITY; BIO-OIL; GUAIACOL HYDRODEOXYGENATION; PHENOLIC-COMPOUNDS; ACTIVATED CARBON; MODEL COMPOUNDS; BIOMASS; FUELS; NI; HYDROTREATMENT; STABILITY; Guaiacol; Hydrodeoxygenation; Ruthenium; Carbon; Pyrolysis oil
ISSN
0920-5861
URI
https://pubs.kist.re.kr/handle/201004/124079
DOI
10.1016/j.cattod.2015.08.027
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE