Full metadata record

DC Field Value Language
dc.contributor.authorSeo, Young Hun-
dc.contributor.authorSingh, Ajay-
dc.contributor.authorCho, Hong-Jun-
dc.contributor.authorKim, Youngsun-
dc.contributor.authorHeo, Jeongyun-
dc.contributor.authorLim, Chang-Keun-
dc.contributor.authorPark, Soo Young-
dc.contributor.authorJang, Woo-Dong-
dc.contributor.authorKim, Sehoon-
dc.date.accessioned2024-01-20T04:32:35Z-
dc.date.available2024-01-20T04:32:35Z-
dc.date.created2021-09-05-
dc.date.issued2016-04-
dc.identifier.issn0142-9612-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/124223-
dc.description.abstractH2O2-Specific peroxalate chemiluminescence is recognized as a potential signal for sensitive in vivo imaging of inflammation but the effect of underlying peroxalate-emitter energetics on its efficiency has rarely been understood. Here we report a simple nanophotonic way of boosting near-infrared chemiluminescence with no need of complicated structural design and synthesis of an energetically favored emitter. The signal enhancement was attained from the construction of a nanoparticle imaging probe (similar to 26 nm in size) by dense nanointegration of multiple molecules possessing unique photonic features, i.e., i) a peroxalate as a chemical fuel generating electronic excitation energy in response to inflammatory H2O2, ii) a low-bandgap conjugated polymer as a bright near-infrared emitter showing aggregation induced emission (AIE), and iii) an energy gap-bridging photonic molecule that relays the chemically generated excitation energy to the emitter for its efficient excitation. From static and kinetic spectroscopic studies, a green-emissive BODIPY dye has proven to be an efficient relay molecule to bridge the energy gap between the AIE polymer and the chemically generated excited intermediate of H2O2-reacted peroxalates. The energy-relayed nanointegration of AIE polymer and peroxalate in water showed a 50-times boosted sensing signal compared to their dissolved mixture in THF. Besides the high H2O2 detectability down to 10(-9) M, the boosted chemiluminescence presented a fairly high tissue penetration depth (>12 mm) in an ex vivo condition, which enabled deep imaging of inflammatory H2O2 in a hair-covered mouse model of peritonitis. (C) 2016 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCI LTD-
dc.subjectHYDROGEN-PEROXIDE-
dc.subjectNANOPARTICLES-
dc.subjectEMISSION-
dc.subjectFLUORESCENCE-
dc.subjectNANOPROBES-
dc.subjectPROBES-
dc.subjectRED-
dc.titleRational design for enhancing inflammation-responsive in vivo chemiluminescence via nanophotonic energy relay to near-infrared AIE-active conjugated polymer-
dc.typeArticle-
dc.identifier.doi10.1016/j.biomaterials.2016.01.038-
dc.description.journalClass1-
dc.identifier.bibliographicCitationBIOMATERIALS, v.84, pp.111 - 118-
dc.citation.titleBIOMATERIALS-
dc.citation.volume84-
dc.citation.startPage111-
dc.citation.endPage118-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000371367500010-
dc.identifier.scopusid2-s2.0-84978835916-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Biomaterials-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusHYDROGEN-PEROXIDE-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusEMISSION-
dc.subject.keywordPlusFLUORESCENCE-
dc.subject.keywordPlusNANOPROBES-
dc.subject.keywordPlusPROBES-
dc.subject.keywordPlusRED-
dc.subject.keywordAuthorHydrogen peroxide-
dc.subject.keywordAuthorChemiluminescence-
dc.subject.keywordAuthorInflammation-
dc.subject.keywordAuthorAIE-active conjugated polymer-
dc.subject.keywordAuthorNanoparticles-
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE