Full metadata record

DC Field Value Language
dc.contributor.authorYoon, Hwa In-
dc.contributor.authorYhee, Ji Young-
dc.contributor.authorNa, Jin Hee-
dc.contributor.authorLee, Sangmin-
dc.contributor.authorLee, Hyukjin-
dc.contributor.authorKang, Sun-Woong-
dc.contributor.authorChang, Hyeyoun-
dc.contributor.authorRyu, Ju Hee-
dc.contributor.authorLee, Seulki-
dc.contributor.authorKwon, Ick Chan-
dc.contributor.authorCho, Yong Woo-
dc.contributor.authorKim, Kwangmeyung-
dc.date.accessioned2024-01-20T04:32:44Z-
dc.date.available2024-01-20T04:32:44Z-
dc.date.created2021-09-05-
dc.date.issued2016-04-
dc.identifier.issn1043-1802-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/124231-
dc.description.abstractEstablishment of an appropriate cell labeling and tracking method is essential for the development of cell-based therapeutic strategies. Here, we are introducing a new method for cell labeling and tracking by combining metabolic gylcoengineering and bioorthogonal copper-free Click chemistry. First, chondrocytes were treated with tetraacetylated N-azidoacetyl-D-mannosamine (Ac(4)ManNAz) to generate unnatural azide groups (-N-3) on the surface of the cells. Subsequently, the unnatural azide groups on the cell surface were specifically conjugated with near-infrared fluorescent (NIRF) dye-tagged dibenzyl cyclooctyne (DBCO-650) through bioorthogonal copper-free Click chemistry. Importantly, DBCO-650-labeled chondrocytes presented strong NIRF signals with relatively low cytotoxicity and the amounts of azide groups and DBCO-650 could be easily controlled by feeding different amounts of Ac4ManNAz and DBCO-650 to the cell culture system. For the in vivo cell tracking, DBCO-650-labeled chondrocytes (1 x 10(6) cells) seeded on the 3D scaffold were subcutaneously implanted into mice and the transplanted DBCO-650-labeled chondrocytes could be effectively tracked in the prolonged time period of 4 weeks using NIRF imaging technology. Furthermore, this new cell labeling and tracking technology had minimal effect on cartilage formation in vivo.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectSTEM-CELLS-
dc.subjectSTRATEGIES-
dc.subjectTHERAPY-
dc.subjectPROLIFERATION-
dc.subjectNANOPARTICLES-
dc.subjectSELECTIVITY-
dc.subjectCARTILAGE-
dc.subjectSURVIVAL-
dc.subjectDISEASE-
dc.titleBioorthogonal Copper Free Click Chemistry for Labeling and Tracking of Chondrocytes In Vivo-
dc.typeArticle-
dc.identifier.doi10.1021/acs.bioconjchem.6b00010-
dc.description.journalClass1-
dc.identifier.bibliographicCitationBIOCONJUGATE CHEMISTRY, v.27, no.4, pp.927 - 936-
dc.citation.titleBIOCONJUGATE CHEMISTRY-
dc.citation.volume27-
dc.citation.number4-
dc.citation.startPage927-
dc.citation.endPage936-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000374812600011-
dc.identifier.scopusid2-s2.0-84965082415-
dc.relation.journalWebOfScienceCategoryBiochemical Research Methods-
dc.relation.journalWebOfScienceCategoryBiochemistry & Molecular Biology-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Organic-
dc.relation.journalResearchAreaBiochemistry & Molecular Biology-
dc.relation.journalResearchAreaChemistry-
dc.type.docTypeArticle-
dc.subject.keywordPlusSTEM-CELLS-
dc.subject.keywordPlusSTRATEGIES-
dc.subject.keywordPlusTHERAPY-
dc.subject.keywordPlusPROLIFERATION-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusSELECTIVITY-
dc.subject.keywordPlusCARTILAGE-
dc.subject.keywordPlusSURVIVAL-
dc.subject.keywordPlusDISEASE-
dc.subject.keywordAuthorBioorthogonal Click Chemistry-
dc.subject.keywordAuthorDBCO-650-
dc.subject.keywordAuthorCell therapy-
dc.subject.keywordAuthorChondrocytes-
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE