A route to synthesis molybdenum disulfide-reduced graphene oxide (MoS2-RGO) composites using supercritical methanol and their enhanced electrochemical performance for Li-ion batteries

Authors
Choi, MugyeomKoppala, Siva KumarYoon, DohyeonHwang, JieunKim, Seung MinKim, Jaehoon
Issue Date
2016-03-31
Publisher
ELSEVIER SCIENCE BV
Citation
JOURNAL OF POWER SOURCES, v.309, pp.202 - 211
Abstract
A simple and effective approach for the tight anchoring of molybdenum disulfide (MoS2) to the surface of supercritical-alcohol-reduced graphene oxide (SRGO) is developed. The MoS2-SRGO composites are synthesized by the one-pot deposition of MoO2 on SRGO and simultaneous reduction of GO to SRGO in supercritical methanol followed by sulfurization. The obtained MoS2-SRGO composites contain a crystalline MoS2 phase comprising 11-14 layers of MoS2. In addition, the composites have mesoporous structures with high porosities, ranging between 55 and 57%. In comparison with bare MoS2 and SRGO, the MoS2-SRGO composites have enhanced electrochemical performances due to their mesoporous structures and the synergetic effect between MoS2 and SRGO sheets. When tested as the anode in a secondary lithium battery, it shows high reversible capacity of 896 mAh g(-1) at 50 mA g(-1) after 50 cycles, a high rate capacity of 320 mAh g(-1) at a high charge-discharge rate of 2.5 A g(-1), and long-term cycling of 724 mAh g(-1) at 50 mA g(-1) after 200 cycles. This unique synthetic approach effectively and tightly anchors MoS2 nanoparticles to the SRGO surface, resulting in improved structural integrity, electron transfer efficiency between the SRGO sheets and MoS2, and Li-ion diffusion kinetics. Crown Copyright (C) 2016 Published by Elsevier B.V. All rights reserved.
Keywords
ORDERED MESOPOROUS MOS2; SULFUR-DOPED GRAPHENE; ANODE MATERIALS; CATALYTIC COMBUSTION; GRAPHITE OXIDE; DIESEL SOOT; LITHIUM; NANOPARTICLES; NANOSHEETS; NANOCOMPOSITES; ORDERED MESOPOROUS MOS2; SULFUR-DOPED GRAPHENE; ANODE MATERIALS; CATALYTIC COMBUSTION; GRAPHITE OXIDE; DIESEL SOOT; LITHIUM; NANOPARTICLES; NANOSHEETS; NANOCOMPOSITES; Supercritical alcohol; Molybdenum disulfide; Reduced graphene oxide; Composites; Lithium-ion battery
ISSN
0378-7753
URI
https://pubs.kist.re.kr/handle/201004/124271
DOI
10.1016/j.jpowsour.2016.01.081
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE