Thickness-Dependent Electrocaloric Effect in Pb0.9La0.1Zr0.65Ti0.35O3 Films Grown by Sol-Gel Process

Authors
Roh, Im-JunKwon, BeomjinBaek, Seung-HyubKim, Seong KeunKim, Jin-SangKang, Chong-Yun
Issue Date
2016-02
Publisher
SPRINGER
Citation
JOURNAL OF ELECTRONIC MATERIALS, v.45, no.2, pp.1057 - 1064
Abstract
Unlike bulk materials, many physical properties of thin-film materials depend on film thickness due to extrinsic effects such as residual stress and the dead layer. In this work, the effect of thickness on the electrocaloric properties of Pb0.9La0.1(Zr0.65Ti0.35)O-3(10/65/35) (PLZT) films grown by the sol gel method was studied experimentally. In the sol gel synthesis, the annealing process results in residual stress and the metal dielectric contact generates a dead layer. These extrinsic effects influence the dielectric and ferroelectric properties of the thin films, and their roles are film thickness dependent. For PLZT of nanometer thickness (from 420 nm to 1080 nm), the permittivity and polarization, and their temperature dependences, showed strong dependence on film thickness. In particular, in the temperature range from 70 degrees C to 350 degrees C, the electrocaloric temperature change showed threefold improvement (from 0.2 degrees C to 0.6 degrees C) as the thickness was increased from 420 nm to 840 nm. This work will aid development of polycrystalline thin films including PLZT for electrocaloric applications.
Keywords
FERROELECTRIC POLYMER NANOCOMPOSITES; THIN-FILM; TEMPERATURE-RANGE; STRESS; FERROELECTRIC POLYMER NANOCOMPOSITES; THIN-FILM; TEMPERATURE-RANGE; STRESS; Electrocaloric effect; PLZT; thickness effect; residual stress; dead layer
ISSN
0361-5235
URI
https://pubs.kist.re.kr/handle/201004/124435
DOI
10.1007/s11664-015-4285-4
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE