Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Bogyu-
dc.contributor.authorPark, Kwang-Sook-
dc.contributor.authorKim, Ji-Ho-
dc.contributor.authorKo, Kyoung-Won-
dc.contributor.authorKim, Jin-Su-
dc.contributor.authorHan, Dong Keun-
dc.contributor.authorLee, Soo-Hong-
dc.date.accessioned2024-01-20T05:02:23Z-
dc.date.available2024-01-20T05:02:23Z-
dc.date.created2021-09-05-
dc.date.issued2016-02-
dc.identifier.issn1616-5187-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/124449-
dc.description.abstractThe stiffness of hydrogels has been reported to direct cell fate. Here, we found that the stiffness of hydrogels promotes the reprogramming of mouse embryonic fibroblasts into induced pluripotent stem cells (iPSCs). We prepared cell culture substrates of various stiffnesses (0.1, 1, 4, 10, and 20kPa) using a polyacrylamide hydrogel. We found that culture on a soft hydrogel plays an important role in inducing cellular reprogramming into iPSCs via activation of mesenchymal-to-epithelial transition and enhancement of stemness marker expression. These results suggest that physical signals at the interface between cell and substrate can be used as a potent regulator to promote cell fate changes associated with reprogramming into iPSCs, which may lead to effective and reproducible iPSC-production.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectE-CADHERIN-
dc.subjectSUBSTRATE STIFFNESS-
dc.subjectMATRIX STIFFNESS-
dc.subjectN-CADHERIN-
dc.subjectCELLS-
dc.subjectMOUSE-
dc.subjectEMT-
dc.subjectAPOPTOSIS-
dc.subjectSWITCH-
dc.subjectOCT4-
dc.titleStiffness of Hydrogels Regulates Cellular Reprogramming Efficiency Through Mesenchymal-to-Epithelial Transition and Stemness Markers-
dc.typeArticle-
dc.identifier.doi10.1002/mabi.201500273-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMACROMOLECULAR BIOSCIENCE, v.16, no.2, pp.199 - 206-
dc.citation.titleMACROMOLECULAR BIOSCIENCE-
dc.citation.volume16-
dc.citation.number2-
dc.citation.startPage199-
dc.citation.endPage206-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000370083000004-
dc.identifier.scopusid2-s2.0-84958046653-
dc.relation.journalWebOfScienceCategoryBiochemistry & Molecular Biology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Biomaterials-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.relation.journalResearchAreaBiochemistry & Molecular Biology-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPolymer Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusE-CADHERIN-
dc.subject.keywordPlusSUBSTRATE STIFFNESS-
dc.subject.keywordPlusMATRIX STIFFNESS-
dc.subject.keywordPlusN-CADHERIN-
dc.subject.keywordPlusCELLS-
dc.subject.keywordPlusMOUSE-
dc.subject.keywordPlusEMT-
dc.subject.keywordPlusAPOPTOSIS-
dc.subject.keywordPlusSWITCH-
dc.subject.keywordPlusOCT4-
dc.subject.keywordAuthorcellular reprogramming-
dc.subject.keywordAuthorinduced pluripotent stem cells-
dc.subject.keywordAuthormesenchymal-to-epithelial transition-
dc.subject.keywordAuthorstemness markers-
dc.subject.keywordAuthorstiffness of hydrogel-
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE