Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy

Authors
Lee, Jee-WookHan, Hyung-SeopHan, Kyeong-JinPark, JiminJeon, HojeongOk, Myoung-RyulSeok, Hyun-KwangAhn, Jae-PyoungLee, Kyung EunLee, Dong-HoYang, Seok-JoCho, Sung-YounCha, Pil-RyungKwon, HoonNam, Tae-HyunLo Han, Jee HyeRho, Hyoung-JinLee, Kang-SikKim, Yu-ChanMantovani, Diego
Issue Date
2016-01-19
Publisher
NATL ACAD SCIENCES
Citation
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, v.113, no.3, pp.716 - 721
Abstract
There has been a tremendous amount of research in the past decade to optimize the mechanical properties and degradation behavior of the biodegradable Mg alloy for orthopedic implant. Despite the feasibility of degrading implant, the lack of fundamental understanding about biocompatibility and underlying bone formation mechanism is currently limiting the use in clinical applications. Herein, we report the result of long-term clinical study and systematic investigation of bone formation mechanism of the biodegradable Mg-5wt% Ca-1wt% Zn alloy implant through simultaneous observation of changes in element composition and crystallinity within degrading interface at hierarchical levels. Controlled degradation of Mg-5wt% Ca-1wt% Zn alloy results in the formation of biomimicking calcification matrix at the degrading interface to initiate the bone formation process. This process facilitates early bone healing and allows the complete replacement of biodegradable Mg implant by the new bone within 1 y of implantation, as demonstrated in 53 cases of successful long-term clinical study.
Keywords
MAGNESIUM ALLOYS; TITANIUM; BIOMATERIALS; SCREW; IONS; MAGNESIUM ALLOYS; TITANIUM; BIOMATERIALS; SCREW; IONS; biodegradable implant; bone formation; clinical application
ISSN
0027-8424
URI
https://pubs.kist.re.kr/handle/201004/124500
DOI
10.1073/pnas.1518238113
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE