Photocatalytic oxidation activities of TiO2 nanorod arrays: A surface spectroscopic analysis

Authors
Hwang, Yun JeongYang, SenaJeon, Bun HeeNho, Hyun WooKim, Ki-JeongYoon, Tae HyunLee, Hangil
Issue Date
2016-01
Publisher
ELSEVIER
Citation
APPLIED CATALYSIS B-ENVIRONMENTAL, v.180, pp.480 - 486
Abstract
The correlation between the defect structures of hydrothermally grown TiO2 nanorods (TNR) and their photocatalytic activity has been investigated by using various surface spectroscopic analysis techniques including scanning transmission X-ray microscopy (STXM) and high-resolution photoemission spectroscopy (HRPES). Defect states related to Ti3+ and oxygen vacancies in TNR were observed when the growth time was over 90 min (i.e., those over 500 nm in height), and these TNR samples showed photocatalytic oxidation activity with respect to the molecules 2-mercaptoethanol (2-ME) or 2-aminothiophenol (2-ATP), also confirmed by HRPES. The presence of defect structures on the TNR influences on the electronic states of titanium and oxygen, and thus can improve the catalytic oxidation reactions. (C) 2015 Elsevier B.V. All rights reserved.
Keywords
X-RAY-ABSORPTION; X-RAY-ABSORPTION; Photo-oxidation reaction; TiO2 nanorods; Photocatalyst; HRPES; STXM
ISSN
0926-3373
URI
https://pubs.kist.re.kr/handle/201004/124572
DOI
10.1016/j.apcatb.2015.07.004
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE