Direct observation of morphological evolution of a catalyst during carbon nanotube forest growth: new insights into growth and growth termination
- Authors
- Jeong, Seojeong; Lee, Jaegeun; Kim, Hwan-Chul; Hwang, Jun Yeon; Ku, Bon-Cheol; Zakharov, Dmitri N.; Maruyama, Benji; Stach, Eric A.; Kim, Seung Min
- Issue Date
- 2016-01
- Publisher
- ROYAL SOC CHEMISTRY
- Citation
- NANOSCALE, v.8, no.4, pp.2055 - 2062
- Abstract
- In this study, we develop a new methodology for transmission electron microscopy (TEM) analysis that enables us to directly investigate the interface between carbon nanotube (CNT) arrays and the catalyst and support layers for CNT forest growth without any damage induced by a post-growth TEM sample preparation. Using this methodology, we perform in situ and ex situ TEM investigations on the evolution of the morphology of the catalyst particles and observe the catalyst particles to climb up through CNT arrays during CNT forest growth. We speculate that the lifted catalysts significantly affect the growth and growth termination of CNT forests along with Ostwald ripening and sub-surface diffusion. Thus, we propose a modified growth termination model which better explains various phenomena related to the growth and growth termination of CNT forests.
- Keywords
- IN-SITU OBSERVATIONS; WATER; MECHANISM; CONDUCTIVITY; STRENGTH; KINETICS; IN-SITU OBSERVATIONS; WATER; MECHANISM; CONDUCTIVITY; STRENGTH; KINETICS; Carbon Nanotube Array; Growth termination; Lifted Catalysts; In-situ TEM
- ISSN
- 2040-3364
- URI
- https://pubs.kist.re.kr/handle/201004/124584
- DOI
- 10.1039/c5nr05547d
- Appears in Collections:
- KIST Article > 2016
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.