Full metadata record

DC Field Value Language
dc.contributor.authorPark, Se Jin-
dc.contributor.authorJeon, Hyo Sang-
dc.contributor.authorCho, Jin Woo-
dc.contributor.authorHwang, Yun Jeong-
dc.contributor.authorPark, Kyung Su-
dc.contributor.authorShim, Hyeorg Seop-
dc.contributor.authorSong, Jae Kyu-
dc.contributor.authorCho, Yunae-
dc.contributor.authorKim, Dong-Wook-
dc.contributor.authorKim, Jihyun-
dc.contributor.authorMin, Byoung Koun-
dc.date.accessioned2024-01-20T05:30:59Z-
dc.date.available2024-01-20T05:30:59Z-
dc.date.created2021-09-03-
dc.date.issued2015-12-16-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/124619-
dc.description.abstractSignificant enhancement of solution-processed CuInxGa1-x(Se,S)(2) (CIGSSe) thin-film solar cell performance was achieved by inducing a band gap gradient in the film thickness, which was triggered by the chalcogenization process. Specifically, after the preparation of an amorphous mixed oxide film of Cu, In, and Ga by a simple paste coating method chalcogenization under Se vapor, along with the flow of dilute H2S gas, resulted in the formation of CIGSSe films with graded composition distribution: S-rich top, In- and Se-rich middle, and Ga- and S-rich bottom. This uneven compositional distribution was confirmed to lead to a band gap gradient in the film, which may also be responsible for enhancement in the open circuit voltage and reduction in photocurrent loss, thus increasing the overall efficiency. The highest power conversion efficiency of 11.7% was achieved with J(sc) of 28.3 mA/cm(2), V-oc of 601 mV, and FF of 68.6%.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectLOW-COST-
dc.subjectCHALCOPYRITE-
dc.subjectPERFORMANCE-
dc.titleChalcogenization-Derived Band Gap Grading in Solution-Processed CuInxGa1-x(Se,S)(2) Thin-Film Solar Cells-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.5b09054-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.7, no.49, pp.27391 - 27396-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume7-
dc.citation.number49-
dc.citation.startPage27391-
dc.citation.endPage27396-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000366873900043-
dc.identifier.scopusid2-s2.0-84950146880-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusLOW-COST-
dc.subject.keywordPlusCHALCOPYRITE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordAuthorsolar cells-
dc.subject.keywordAuthorCIGSSe-
dc.subject.keywordAuthorsolution process-
dc.subject.keywordAuthorband gap grading chalcogenization-
Appears in Collections:
KIST Article > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE