Mechanically Recoverable and Highly Efficient Perovskite Solar Cells: Investigation of Intrinsic Flexibility of Organic-Inorganic Perovskite
- Authors
- Park, Minwoo; Kim, Hae Jin; Jeong, Inyoung; Lee, Jinwoo; Lee, Hyungsuk; Son, Hae Jung; Kim, Dae-Eun; Ko, Min Jae
- Issue Date
- 2015-11-18
- Publisher
- WILEY-V C H VERLAG GMBH
- Citation
- ADVANCED ENERGY MATERIALS, v.5, no.22
- Abstract
- Highly efficient solar cells with sustainable performance under severe mechanical deformations are in great demand for future wearable power supply devices. In this regard, numerous studies have progressed to implement flexible architecture to high-performance devices such as perovskite solar cells. However, the absence of suitable flexible and stretchable materials has been a great obstacle in the replacement of largely utilized transparent conducting oxides that are limited in flexibility. Here, a shape recoverable polymer, Noland Optical Adhesive 63, is utilized as a substrate of perovskite solar cell to enable complete shape recovery of the device upon sub-millimeter bending radii. The employment of stretchable electrodes prevents mechanical damage of the perovskite layer. Before and after bending at a radius of 1 mm, power conversion efficiency (PCE) is measured to be 10.75% and 10.4%, respectively. Additionally, the shape recoverable device demonstrates a PCE of 6.07% after crumpling. The mechanical properties of all the layers are characterized by nanoindentation. Finite element analysis reveals that the outstanding flexibility of the perovskite layer enables small plastic strain distribution on the deformed device. These results clearly demonstrated that this device has great potential to be utilized in stretchable power supply applications.
- Keywords
- STRESS-STRAIN RELATION; THIN-FILMS; NANOINDENTATION; DEVICES; ARRAYS; INDENTATION; MOBILITIES; MEMORY; STRESS-STRAIN RELATION; THIN-FILMS; NANOINDENTATION; DEVICES; ARRAYS; INDENTATION; MOBILITIES; MEMORY; flexible solar cells; nanoindentation; perovskite solar cells; shape memory polymers; stretchable electronics
- ISSN
- 1614-6832
- URI
- https://pubs.kist.re.kr/handle/201004/124742
- DOI
- 10.1002/aenm.201501406
- Appears in Collections:
- KIST Article > 2015
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.