Sputtering and sulfurization-combined synthesis of a transparent WS2 counter electrode and its application to dye-sensitized solar cells

Authors
Hussain, SajjadShaikh, Shoyebmohamad F.Vikraman, DhanasekaranMane, Rajaram S.Joo, Oh-ShimNaushad, Mu.Jung, Jongwan
Issue Date
2015-11
Publisher
ROYAL SOC CHEMISTRY
Citation
RSC ADVANCES, v.5, no.125, pp.103567 - 103572
Abstract
In this work, continuous and large-area tungsten sulfide (WS2) films, deposited by radio frequency sputtering followed by a sulfurization process, were applied as a low-cost platinum (Pt)-free counter electrode (CE) for dye-sensitized solar cells (DSSCs). The composition and structure of WS2 films were confirmed using X-ray diffraction, field-emission scanning electron microscopy, Raman spectroscopy and Xray photoemission spectroscopy techniques. The WS2 CE was phase pure and considerably transparent. The cyclic voltammetry, electrochemical impedance spectroscopy and Tafel curve showed that the WS2 CE possesses high electrocatalytic activity and fast reaction kinetics for the reduction of tri-iodide to iodide, which can be attributed to its inherent catalytic property. Finally, TiO2-based DSSC with an optimized WS2 CE (sputtered for 10 min) showed as high as 6.3% power conversion efficiency, which was comparable to the performance of DSSC with a Pt-based CE (6.64%). Our study demonstrated the feasibility to develop low-cost, transparent, catalytically active, stable and abundant metal chalcogenide catalysts by an RF sputtering method to replace Pt CE for photovoltaic application.
Keywords
LOW-COST; HYDROGEN EVOLUTION; GRAPHENE NANOPLATELETS; TUNGSTEN DISULFIDE; COMPOSITE FILM; EFFICIENCY; PLATINUM; PERFORMANCE; TIO2; ELECTROCATALYST
ISSN
2046-2069
URI
https://pubs.kist.re.kr/handle/201004/124781
DOI
10.1039/c5ra18613g
Appears in Collections:
KIST Article > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE